
Efficient Task/Motion Planning for a Dual-arm Robot
from Language Instructions and Cooking Images

Kota Takata1, Takuya Kiyokawa1, Ixchel G. Ramirez-Alpizar2, Natsuki Yamanobe2

Weiwei Wan1, and Kensuke Harada1,2

Abstract— When generating robot motions based on instruc-
tions such as cooking recipes, ambiguity of the instructions and
lack of necessary information are problematic for the robot.
To solve this problem, we propose an efficient motion planning
approach for a dual-arm robot by constructing a graph network
representing a motion sequence based on a recipe consisting
of verbal instructions and cooking images. A functional unit
is generated based on the linguistic instructions in the recipe.
Since most recipes lack the necessary information for executing
the motion, we first consider extracting the information about
the cooking motion like cutting from the food images of
the recipe and supplementing it. In addition, to supplement
the actions that humans perform unconsciously, we generate
functional units for actions not explicitly mentioned in the
recipe based on the current situation of the cooking process, and
then connect them to the functional units generated from the
recipe. Moreover, during the connection we consider the motion
of the robot’s arms in parallel for an efficient execution of the
recipe, similar to those of a human. Through experiments, we
demonstrate that for a given recipe, the proposed method can be
used to generate a cooking sequence with the supplementary
information needed, and executed by a dual-arm robot. The
results show that the proposed method is effective and can
simplify robot teaching in cooking tasks.

I. INTRODUCTION

When a robot performs a task based on a cooking recipe,
problems such as ambiguous instructions or missing informa-
tion must be solved. In particular, there are cases where the
written instructions contain ambiguous descriptions, and/or
the information necessary to execute the task is not available
(or missing). For example, a written instruction such as
“cut the food into pieces of appropriate size” is not enough
for the robot to execute it. In this case, it is necessary to
complement the missing information, this can be done by
estimating the processing method of the ingredients from
the cooking images, which usually accompanied a recipe.
In addition, cooking recipes often omit information that
humans unconsciously supplement (common knowledge).
Therefore, for a robot to perform the task, the information
in the recipe is not sufficient, and the information that the
human completes unconsciously has to be supplemented.
For example, when a recipe describes “cutting carrots,” the
actions of “placing the carrots on the cutting board” and
“holding the knife” are usually not described in the recipe.
The order of execution of these motions are also common
sense for a human, however, not for the robot. Therefore, it

1Graduate School of Engineering Science, Osaka University, Japan
2Industrial Cyber-Physical Systems Research Center, National Institute

of Advanced Industrial Science and Technology (AIST), Japan

Cut
(Slice)

Instruc ons:
1. Cut carrot

into pieces of
appropriate size.

2. :

recipe

Title: Cream stew
Ingredients:
Carrot, Potato, ..

ID: XX00##

(a)

Cut
(???)

Wri en instruc on

Cooking work space

Cooking

Robot

Place
Pick & Grasp

Grasp

Cut
(Slice)

Place
Pick &

Le
Right

(1)

(b) (c)Information completionCooking execution

image

(1)

(2) (2)

(3)

(2)

(3)

Fig. 1: (a) Cooking recipe consisting of a cooking image and
written instructions. (b) First, the information missing in the
written instructions is obtained from the cooking image and
complemented. Next, information on motions that are not
explicitly stated in the recipe are complemented, taking into
account the parallel execution of the arms. (c) The robot
executes the action based on the graph network.

is necessary to determine the motions that are not explicitly
stated in the recipe and their order.

To solve these problems, we propose an efficient action
planning method for dual-arm robots based on the construc-
tion of a graph network from a cooking recipe consisting of
written instructions and food images. In this method, we first
generate a functional unit, which is the basic unit of the graph
network and consists of object nodes and motion nodes,
based on the written instructions. Next, we supplement the
missing information in the functional unit taking advantage
of the implicit information contained in the recipe’s pictures.
In particular, for ambiguities in written instructions, where
specific information is missing, we create a CNN-based
estimation system to obtained this information from the
cooking images of the recipe. In this paper, we focus on the
case where the information about the process of cutting (style
and/or size) is missing or vague. Additionally, for the case
where necessary information for the execution of the recipe
instructions is missing, we use a graph network structure
to represent the cooking task, focusing on the relationship
between the motion and the object and the object’s change
of state to deduce the missing information. Finally, our
method constructs the graph structure consisting of the whole
sequence of a cooking process by connecting the functional
units. Furthermore, the proposed graph network allows us to
do an efficient task planning by appropriately assigning each
task to the left or right hands, and deciding whether or not the

tasks can be executed in parallel. In summary, the main con-
tributions of this paper are: an efficient task planning method
for a dual-arm robot based on a graph network; information
extraction of a cooking recipe through the combined use of
the recipe’s instructions and images; completion of missing
information by connecting the constructed graph network.

This paper is organized as follows. Section II describes the
related work. Sections III through VI describe the proposed
method. In Section VII, we describe the results of our
experiments with a real robot and evaluate the efficiency of
the task. Finally, in section VIII, we conclude and discuss
future work.

II. RELATED WORK

To plan the motion of a robot performing a task, hierarchi-
cal structured task and motion planning have been proposed
by Wolfe et al. [1]; the proposed framework in this paper can
also be categorized into task and motion planning. Recently,
some extensions of task and motion planning have been
proposed [2]–[6]. Dual-arm manipulation has been discussed
by several researchers such as [7], [8]. In recent years, mo-
tion planning for dual-arm manipulation methods have been
proposed such as sequential [9], [10] and coordinated [11]
motion planning methods. Stavridis et al. [12] and Moriyama
et al. [13] proposed the task and motion planning for a
dual-arm assembly task. Paulius et al. [14], [15] proposed a
representation framework called FOON (Functional Object-
Oriented Network) to model the relationship between actions
and objects and the state changes of objects in a task.

For planning cooking motions, Yamazaki et al. [16] have
performed robotic cooking operations like cut and peel.
Mu et al. [17] analyzed the mechanics of cutting operation
for cooking ingredients. Yamaguchi et al. [18] realized a
robot to learn a pouring operation. Recently, research has
been conducted on robotic motion planning from written
information such as a recipe. Inagawa et al. [19] generate a
cooking behavior from a cooking recipe that can be executed
by a robot based on the obtained behavior code. Beetz et al.
[20] applied natural language processing to a recipe uploaded
in the web and performed action planning of robots. Lisca
et al. [21] proposed a framework on conducting chemical
experiments from written information. However, in these
studies, the information which is not explicitly written is
not considered (e.g. there is no missing information in the
recipes). On the other hand, Kazhoyan et al. [22] prepared
reasoning rules written in action description and used them
for supplying the information which is not contained in
the written instructions. In addition, large-scale recipe data
have been trained with RNN to build inference models [23].
On the other hand, we consider the task efficiency of a
dual-arm robot based on the graph network structure. In
addition, visual information has not been considered in these
researches.

III. GENERATION OF GRAPH NETWORKS

In this section, we describe the elements required for graph
generation and how it is generated.

A. Definitions

1) Verb frame: In our method, written instructions are
structured in verb frame [23], [24], and a graph network is
constructed based on this. For example, as shown in Fig.2,
for a cutting motion and stir frying motion, the following
arguments are defined: Food, Type, Container, Tool, and
Equipment. These arguments are defined by the objects and
types of motion described in the recipe instructions; they
constitute the basic unit of the graph network for representing
the motions of the recipe instructions as object nodes and
motion nodes in the graph network. The arguments for cook-
ing containers and tools omitted in the written instructions
are initialized with values based on cooking common sense.

Container
Tool

Food

SpatulaContainer
Tool 1

Food
Type

Cu ng board
Knife Strength of re

S r fryCut
Carrot

Cooking pan

High heat

Carrot
Slice

Tool 2 Tong Equipment Stove

Fig. 2: Verb frame

2) Graph network: In the proposed graph network, an
object node and a hand node, which represent the state before
the motion starts, and an object node and a hand node,
which represent the state after the motion, are connected
to a motion node. The hand node represents the hand that
performs the motion. The basic unit of a graph network is
called a functional unit. A graph network representing a
task plan is constructed by connecting multiple functional
units. The graph network of our method shares similarities
with the conventional method proposed by Paulius [14], [15].
However, they differ in that the nodes have the information
necessary for motion planning in addition to the information
for task planning. Also, hand nodes necessary for planning
including the use of the left and right arms are introduced.
An example of a graph network is shown in Fig.3.

Fig. 3: A functional unit of the proposed graph network.

3) Functional unit with variables and Motion library:

A functional unit with variables is a unit in which the type
of object cannot be uniquely defined, thus it is defined as
a variable. For example, a functional unit with variables
for the “pouring operation” defines as variables the “food”
that is the object to be poured, the “container A” in which
the food is placed before the pouring operation is executed,
and the “container B” in which the food is placed after
the pouring operation is executed (Fig.4). In this way, it
is possible to define the type of object for each motion.
In our method, functions that define functional units with
variables for each motion are stored in the Motion library. By
introducing functional units with variables, it is possible to
create functional units according to the situation by assigning
values to the variables according to the situation.

pour
T : ---

''food''
place : ''container B''

state : ---

''container A''
place : ---

inside : none

''container B''
place : ---

inside : ''food''

''hand''
inside : none

''food''
place : ''container A''

state : ---

''container A''
place : ---

inside : ''food''

''container B''
place : ---

inside : none

''hand''
inside : none

Fig. 4: A functional unit with variables in Motion library.

B. Generation of graph networks

Based on the verb frame and the initial nodes at the
beginning of the task, the functional unit of the recipe is
generated (Fig.5). First, the initial nodes are generated, of
which we focus on the nodes related to the motion and the
hand nodes based on the values of the verb frame. These
nodes are then given as arguments to the function that defines
the functional unit with variables stored in the motion library
to generate the functional unit for the motion indicated by the
recipe. Attributes that are not defined by the functional unit
with variables are inherited from the values of the attributes
of the nodes given as arguments.

Cooking workspace

Initial nodes

Verb frame

Type High
Food Oil

Heat

Functional unit

Motion library

“Food” “Container”

Heat(“Type”)

“Equipment” “Food” “Container”

…

Heat “Food” in “Type”

Container Cooking pan

Stove Oil Cooking pan

Heat(High)

Stove Oil Cooking pan

Equipment Stove “Equipment”

Functional unit
generation process

Fig. 5: Workflow for generating the functional unit of a
recipe.

IV. INFORMATION COMPLETION FROM IMAGES

In our method, written instructions are structured by
converting them into verb frames. In this process, in many
cases, there are arguments whose values are empty due to
insufficient written instructions. For example, vague instruc-
tions such as “cut the carrots into pieces” or “stir fry the
pork in a cooking pan until it changes color” will result in
incomplete verb frames such as Fig.6. In order to generate
a graph network of the recipe, we need to assign values to
all arguments of the verb frame. Therefore, in our method,
the missing information in the instructions is obtained from
the image by using a processing state estimation system. In
this paper, we focus on the cases where the cutting motions
are missing in the written instructions.

Container
Tool

Food

SpatulaContainer
Tool 1

Food
Type

Cu ng board
Knife Strength of re

S r fryCut
Carrot

Cooking pan

???

Carrot
???

Tool 2 Tong Equipment Stove

Fig. 6: Verb frame obtained based on insufficient written
instructions.

The processing state estimation system is a system that
outputs the processing state of an ingredient when giving a
cooking image and the name of the ingredient of interest as
inputs. First, a food detection model for the food of interest
is applied to the food image to detect the food of interest.
The food detection model is constructed by retraining a deep
learning model for object detection with food image data.
Next, the processing state is estimated based on the images of
the food of interest and the cooking image. Previous research
on estimating the state of food [25], [26] have proposed
solving the problem as an image classification problem for
an input image of one type of food using a Convolutional
Neural Network (CNN). In this research, the same approach
is taken, but unlike previous research, the image classification
problem is solved by providing the image of the food of
interest and the cooking image as the input to the CNN, the
processing state of the food is estimated based on the output
of the CNN (Fig.7).

Name of food
Food detection
model (carrot) Food images

State classification
CNN model (carrot)

Confidence score

Predicted probability

Calculating
state score Sl

Cooking image

Carrot 1 2 N:

C1 C2 CN:

for each state class

P1=[p1,1 ,…,p1,M], ,PN=[pN,1 ,…,pN,M]:

State class of the food
Slice cu ng

Fig. 7: Estimation system for cutting state.

When multiple ingredients are detected, multiple esti-
mation results must be integrated. To solve this problem,
we calculate a state score. While some food images show

significant features of the processing state, others do not
because they are hidden. Therefore, for the images with
significant features of the processing state to greatly influence
in the final estimation result, the estimation is performed by
calculating the processing state score Sl using Equation (1).

Sl =
N

Â
i=1

pi,lCi (1)

where N is the number of food images obtained and
Ck is the confidence score of the k-th (k = 1, ...,N) image
obtained by the detection model. Pi = [pi,1, ..., pi,M] can be
obtained from the output layer of the CNN by using the N

food images as input. Pi represents the prediction probability
of the M processing state classes. pi,l is the probability of
the i-th cooking image of being in the l processing state
l 2 {state1, ...,stateM}. The higher the confidence score Ck

is, the more the characteristics of the food are expressed, and
thus the more the characteristics of the processing state of
the food are also expressed. Therefore, by multiplying the
confidence score Ck by pk,s(s = 1, ...,M) and calculating the
sum of N, the images that show significant characteristics of
the processing state will greatly influence the final estimation
result. The processing state l with the highest score Sl

calculated by Equation 1 is determined to be the processing
state of the food of interest in the cooking image. An example
of state estimation by the processing state estimation system
is shown in Fig.8.

1 2

2

1 1 C1=0.90 P1=[0.00,0.00,1.00]

2 C2=0.40 P2=[1.00,0.00,0.00]

S Julienne cu ng = 0.40
S Random cu ng = 0.00
S Slice cu ng = 0.90

L = {Julienne cu ng, Random cu ng, Slice cu ng}

Predicted class = “Slice cu ng”

Fig. 8: Example of state estimation (cooking image was
obtained from [27]).

V. IMPLICIT INFORMATION COMPLETION

In this section, we describe a method for supplementing
information on motion not explicitly mentioned in a recipe
(called sub motion) that are necessary to execute the (ex-
plicit) motion of the recipe (called main motion).

A. Determination of required motions

By comparing the attribute values of the initial node and
the input node of the functional unit of the main motion, the
sub motion that needs to be completed is determined. Here,
the arm to be used for each motion is also determined based
on the value of the attribute of the object to be moved. Task
L and Task R are defined as motions that can be performed
only by the left or right arm, and Task LR is defined as
motions that can be performed by both arms.

In the following, we describe the procedure for determin-
ing the sub motions that need to be complemented. First,

the input nodes of the functional unit of the main motion
are maintained as an input node list. In addition, among the
initial nodes that represent the initial state, the nodes that
have the same name as the nodes in the input node list and
the hand nodes are retained as the output node list. Next,
the values of the attributes of the nodes with the same name
in the output node list and the input node list are compared
based on the rules to obtain the necessary completion sub
motions. In the example shown in Fig.9, we obtain the
sub motion lists Task L={“Tool B”, “Container A”}, Task
R={“Tool B”}, and Task LR={}, which are required to
execute the motion of pouring potatoes into a bowl. Here,
“Tool B” represents the motion of returning the tool to its
original location, and “Container A” represents the motion
of moving the container to the work space.

Fig. 9: Example of determining which sub motions need to
be completed.

B. Representation of candidate steps in a tree graph

The list of sub motions does not have information about
the task procedures of those sub motions. Therefore, a
tree graph is constructed to determine the steps of the
sub motions. Here, we consider the parallel processing of
the arms to improve the efficiency of the task. The nodes
of the tree have two types of information. The first is
the combination of complementary motions: Li,R j represent
dual-arm parallel processing, while None represents single-
arm processing. Here, Li,R j represent the execution of the
left arm and the right arm, respectively, and None means
that no processing is performed. The second is whether
the operation is executable or not. True indicates that the
operation is executable, False indicates that the motion is
not executable, and None indicates that the operation is not
yet determined. A tree constructed for Task L={“Tool B”,
“Container A”} and Task R={“Tool B”}. Part of the graph
structure is shown in Fig.10. The path from the root node to
the leaf nodes represents the work procedure.

C. Determination of the viability of work procedures

The work procedure obtained here does not take into ac-
count the possibility of execution. Therefore, it is necessary
to determine whether or not the generated work procedure
can be executed. For the node that represents the situation at
the time the task is executed, the value of the node’s attribute

Root

L:tool_B(tong)
R:tool_B(knife)
Exe:None

L:tool_B(tong)
R:None
Exe:None

L:container_A
R:tool_B(knife)
Exe:None

t_3 t_4

L:container_A
R:None
Exe:None

L:container_A
R:tool_B(knife)
Exe:None

L:container_A
R:None
Exe:None

L:None
R:tool_B(knife)
Exe:None

L:tool_B(tong)
R:None
Exe:None

L:None
R:tool_B(knife)
Exe:None

L:container_A
R:None
Exe:None

Route 1 Route 2

Route 3 Route 4

Route 5

・ ・

Fig. 10: Example of tree structure.

is judged based on the rule to see if it satisfies the condition,
and the value of True or False is given to the executable
attribute of the tree graph. In the situation shown in Fig.11,
to execute the operation of pouring food into container B,
the following two rules are required: Rule 1 is the place
attribute of “Container B” equal to work space or stove in
work space. Rule 2 is the inside attribute of “Hand” equal
to none. In situation (a), this condition is satisfied, so it is
feasible and True is given to the attribute values of the tree
nodes. On the other hand, in situation (b), this condition is
not satisfied, so it is not feasible and False is given to the
attribute values of the tree nodes. For all the nodes of the
tree graph, the feasibility of execution is determined, and the
work procedure for which the attribute value of the leaf node
is True is determined to be an executable work procedure.

Fig. 11: Example of judging whether or not to execute.

D. Determination of efficient work procedures

Among the paths in the tree that represent feasible work
sequences, the path with the smallest length is the most
efficient work sequence (Fig.12). Based on this procedure,
a work sequence for a dual-arm robot can be obtained by
constructing a graph network. The functional units of the
sub motion are generated by giving the current node of
interest as the argument of the function that defines the
functional unit with variables in the motion library (Fig.13).
The executable working procedure generates a functional unit
for that motion according to this procedure and combines
it with the current node, and the functional units of all
sub motions are connected. Finally, it is combined with the
functional unit of the recipe operation to obtain a series of
work sequences necessary for the execution of the recipe
instructions. In our method, the robot executes the task based
on the graph network of this work sequence.

Root

L:tool_B(tong)
R:tool_B(knife)
Exe:True

L:tool_B(tong)
R:None
Exe:True

L:container_A
R:tool_B(knife)
Exe:False

t_3 t_4

L:container_A
R:None
Exe:True

L:container_A
R:tool_B(knife)
Exe:True

L:container_A
R:None
Exe:True

L:None
R:tool_B(knife)
Exe:True

L:tool_B(tong)
R:None
Exe:None

L:None
R:tool_B(knife)
Exe:True

L:container_A
R:None
Exe:True

route 3 route 4

・ ・

Executable Executable
route 1 route 2

Executable Executable
and e cient and e cient

Fig. 12: Tree after the execution order is determined.

pour
T : ---

''food''
place : ''container B''

state : ---

''container A''
place : ---

inside : none

''container B''
place : ---

inside : ''food''

''hand''
inside : none

''food''
place : ''container A''

state : ---

''container A''
place : ---

inside : ''food''

''container B''
place : ---

inside : none

''hand''
inside : none

potato
place : plate

state : cut(slice)

plate
place : storage space

inside : potato

bowl
place : work space

inside : none

R-hand
inside : none

pour
T : 2

potato
place : bowl

state : cut(slice)

plate
place : storage space

inside : none

bowl
place : work space

inside : potato

R-hand
inside : none

potato
place : plate

state : cut(slice)

plate
place : storage space

inside : potato

bowl
place : work space

inside : none

R-hand
inside : none

Fig. 13: Generating a functional unit for a sub motion.

VI. MOTION PLANNING BASED ON GRAPH INFORMATION

In this section, we describe a method for planning the
motion of a dual-arm robot based on a graph network. By
using this method, it is possible to generate some motions
based on graphs, such as the pick and place motion of a
container and the grasp motion of a tool. First, we describe
the necessary predefinition, and then explain the motion
planning. In advance, we define several grasping positions
relative to the origin of the object (Fig.14(a.1)). The combi-
nation of linear trajectory and RRTconnect [28] is defined as
the motion generation function for each motion (Fig.14(a.2)).
Under these predefinitions, the key posture of the object is
first determined based on the values of the input nodes of
the motion object in the functional unit. For example, in a
pick and place operation, the initial posture and the target
posture are determined. The initial posture is obtained from
the input node of the target object. In case the target posture
can be determined from the position and posture of other
related objects, it is obtained from the position and posture
information of the input node of the related object. In the
example shown in Fig.14, the posture of the final state of
the frying pan (target object) is determined by the posture of
the stove (related object) (Fig.14(b)). Next, the posture of the
arm is obtained by solving the IK for the initial and target
states determined based on the predefined grasp posture
and node values (Fig.14(c)). Finally, trajectory planning is
performed for the obtained arm posture by combining linear

pick and place

cooking pan
pos : [334,-430,1107]

rot : [1,2,3]

stove
pos : [420,81,1110]

rot : [-0,-0,-90]

R-hand
armpos : [-5,-55,108,-138,135,192]

eepos : [362,-440,1268]
eerot : [133,121,1]

cooking pan
pos : [482,-95,1149]

rot : [1,2,1]

stove
pos : [420,81,1110]

rot : [-0,-0,-90]

R-hand
armpos : [-4,56,91,-121,158,95]

eepos : [260,-232,1319]
eerot : [-112,8,-35]

Start Goal

③

RRTconnect
Straight line

①

②

④

⑤ ⑥

①,④

②,③, ⑤, ⑥

Pick and Place

Start

R-hand

Goal
cooking pan

stove

(a.1)

(c.1)

(d.1)

(b.1)

(a.2)

(b.2)

(c.2)

(d.2)

Fig. 14: Procedure for generating motions based on a graph
network.

trajectory and RRTconnect [28] based on the predefined
motion generation function (Fig.14(d)).

VII. EXPERIMENTAL RESULTS

This section explains the experiment conducted to show
the effectiveness of the proposed approach.

A. Experimental environment

The experimental setup and the experimental environment
are shown in Fig.15. In the recipe, at the written instructions
1, 2, and 3, it is necessary to complete motions that are
not explicitly stated in the recipe. In addition, instruction 2
requires the completion of the processing method from the
cooking image. In this experiment, two robotic arms are used,
and a work space and two storage spaces (right and left) are
prepared. The objects are arranged as shown in Fig.15, and
the initial position and orientation of each object are known.
If there is an object in the work space, both arms can be
used. If there is an object in the storage space, only the arm
near the storage space can be used. The robot arms are two
UR3, the hand is a 2-Finger 85mm Gripper, the ingredients
are food samples, and objects such as cooking tools and
containers are designed for the robot.

B. Completing information from images

In this experiment, we built an estimation system using
images from the Rakuten recipe in the Rakuten dataset
[27] as training data. Initially, the written instructions are
structured in verb frames, and the results obtained are shown
in Fig.16. From this result, we can see that the processing
method of cutting needs to be obtained from the image
and complemented. We applied the estimation system to the
cooking image of the recipe, the results of the estimation
(food detection and state classification) are shown in Fig.17.

2. 人参を適当な大きさに切る．
Cut the carrots into appropriate sizes.
3.人参をフライパンで強火で炒める．
S r fry the carrots in a pan over high heat.

1. フライパンで油を強火で熱す．
Heat the oil in a cooking pan over high heat..

work
space

storage
space
(le)

storage
space
(right)

Fig. 15: Cooking recipe and environment for the experiment
(Cooking image obtained from [27]).

In addition, the processing state score Sl for each state was
calculated as S julienne=0.00, Srandom =0.25, and Sslice=2.90,
respectively.The result is “slice cutting”. This completes the
missing information in the written instructions.

Container
Tool

Food

SpatulaContainer
Tool 1

Food
Type

Cu ng board
Knife Strength of re

S r fryCut
Carrot

Cooking pan

High heat

Carrot
???

Tool 2 Tong Equipment Stove

Container

Food

Cooking pan

Heat
Oil

High heatHeat type

Equipment Stove

Fig. 16: Verb frames obtained from the written instructions
in the recipe.

C1 : 0.27

P1 :

C4 : 0. 87C3 : 0. 81 C5 : 0.89

C2 : 0.31

L = {Julienne cu ng, Random cu ng, Slice cu ng}

1 2

3 4 5

1
23

45 (b)(a)

P2 :

P3 : P4 : P5 :

0.00
0.00
1.00

0.00
0.70
0.30

0.00
0.00
1.00

0.00
0.00
1.00

0.00
0.04
0.96

Fig. 17: Estimated results from cooking image.

C. Completing implicit information

Next, we complement the information that is not explicitly
indicated in the recipe. First, we generate the functional
units of the explicit indications of the recipe based on
the verb frame shown in Fig.16. Next, we compare the
attribute’s values of the current node and the input node
of the instruction of the recipe to determine the required
operations. The current node is the node of each object at
the start of the work shown in Fig.15 for instruction 1, and
at the end of the previous operation for instructions 2 and
3. From this, it is determined that three sub motions are
required for Heat operation, four for Cut operation, and four
for Stir fry operation, as shown in Table I.

Next, the results for the tree graphs constructed to de-
termine the steps for the obtained sub motions are shown
in Table II. Among the feasible paths, the minimum path
length was found to be 3 for Heat operation, 3 for Cut
operation, and 2 for Stir fry operation. This result indicates
that the efficiency of the task is improved when using dual-
arm parallel executions: once for Cut operation and twice

TABLE I: Sub motion list for each instruction.

TaskR TaskL TaskRL

Heat
Container B1

Food B2 Equipment A3

Cut
Tool A4

Container A5
Tool A4

Food A6

Stir fry Tool B7 Tool B7

Tool A4 Food B2

1 Pick and place : Moving the container to the top of the stove.
2 Pour : Moving food that cannot be grasped to the other container.
3 Turn on : Turning the stove on and ignite it.
4 Grasp : Grasping the cooking tool.
5 Pick and place : Moving the container to the work space.
6 Pick and place : Moving food that can be grasped to the other container.
7 Release : Returning the cooking tool to the stand for tool.

for Stir fry operation. The obtained tree graph is partially
shown in Fig.18. Finally, Fig.19 shows the graph network
representing the efficiently determined task plan.

TABLE II: Results of the tree graph structure.

Number of routes Length of routes
All Executable Min Max Ave

Heat 16 2 3 3 3.00
Cut 52 5 3 4 3.60

Stir fry 94 20 2 4 3.45

Root

L:tool_B(tong)
R:tool_B(knife)
Exe:True

L:tool_B(tong)
R:food_B
Exe:False

t_2 t_3 t_4 t_5 t_6 t_7

L:tool_A(spatula)
R:food_B
Exe:True

L:tool_A(spatula)
R:None
Exe:True

L:None
R:food_B
Exe:True

L:tool_A(spatula)
R:tool_B(knife)
Exe:None

L:tool_A(spatula)
R:None
Exe:None

L:None
R:tool_B(knife)
Exe:None

L:None
R:food_B
Exe:True

L:tool_A(spatula)
R:None
Exe:True

L:None
R:tool_B(knife)
Exe:None

L:tool_A(spatula)
R:None
Exe:None

Fig. 18: Part of the tree structure for the sub motions of Stir
fry operation.

D. Experiment with the robot

Finally, we conducted an experiment in which the dual-
arm robot cooked in a real environment based on the obtained
task and motion plan. As a result, the dual-arm robot
succeeded in executing the cooking task instructed in the
recipe by supplementing the motions that were not specified
in the recipe before and after the instructions in the recipe.
The robot experiment is shown in the Fig.20.

VIII. CONCLUSION

In this paper, we proposed a method to generate the mo-
tions of a dual-arm robot by supplementing the information
necessary to carry out recipe instructions. In particular, when
the instructions for the cutting motion are ambiguous, the
information can be supplemented from the images in the
recipe. In addition, it can complement the information about
the preparatory motions of a dish and its working procedures
that are not explicitly stated in the recipe. Furthermore, by

taking into account the parallel processing of the two arms,
an efficient work procedure can be planned. In the future, we
would like to consider the case where two robots are used.
Also, a future task would be to consider a system where a
mobile robot is used and for collaborative work with humans.
We would like to expand our method to include information
for various cooking operations other than cutting, such as
stir frying, baking, and mixing. Furthermore, our method can
also be applied to other tasks that use instructions composed
of images and text, such as the assembly of industrial
products.

More figures and videos of this research can be seen at
www.roboticmanipulation.org/res/cook

IX. ACKNOWLEDGEMENT

In this paper, we used “Rakuten Dataset” (https:
//rit.rakuten.com/data_release/) provided by
Rakuten Group, Inc. via IDR Dataset Service of National
Institute of Informatics.

REFERENCES

[1] J. Wolfe, B. Marthi, and S. Russell, “Combined task and motion
planning for mobile manipulation,” in Proc. of 20th Int. Conf. on

Automated Planning and Scheduling, 2010.
[2] L. Kaelbling and T. Lozano-Perez, “Integrated task and motion plan-

ning in belief space,” Int. J. Robot. Res., 2013.
[3] C. Garrett, T. Lozano-Pérez, and L. Kaelbling, “Ffrob: an efficient

heuristic for task and motion planning,” Algorithmic Foundations of

Robotics XI, p. 179–195, 2015.
[4] B. Woosley and P. Dasgupta, “Integrated real-time task and motion

planning for multiple robots under path and communication uncer-
tainties,” Robotica 36(3), p. 353, 2018.

[5] W. Wan and K. Harada, “Developing and comparing single-arm and
dual-arm regrasp,” IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 243–
– 250, 2016.

[6] W.Wan and K. Harada, “Regrasp planning using 10,000 grasps,” in
Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2017,
pp. 1929––1 936.

[7] B. Siciliano, “Advanced bimanual manipulation: results from the
dexmart project,” Springer Science & Business Media, 2012.

[8] J. Krüger, G. Schreck, and D. Surdilovic, “Dual arm robot for flexible
and cooperative assembly,” CIRP Ann. 60(1), 2011.

[9] B. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm
manipulations with n-arm robots,” in Proc. of Annual Symposium on

Combinatorial Search, 2015.
[10] J. Kurosu, A. Yorozu, and M. Takahashi, “Simultaneous dual-arm

motion planning for minimizing operation time,” Appl. Sci. 7(12), p.
2110, 2017.

[11] I. Ramirez-Alpizar, K. Harada, and E. Yoshida, “Human-based frame-
work for the assembly of elastic objects by a dual-arm robot,”
Robomech. J. 4(1), p. 20, 2017.

[12] S. Stavridis and Z. Doulgeri, “Bimanual assembly of two parts with
relative motion generation and task related optimization,” in Proc.

of IEEE/RSJ Int.l Conf. on Intelligent Robots and Systems, 2018, p.
7131–7136.

[13] R. Moriyama, W. Wan, and K. Harada, “Dual-arm assembly planning
considering gravitational constraints,” in Proc. of IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2019, pp. 5566–5572.
[14] D. Paulius et al., “Functional object-oriented network for manipulation

learning,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2016.
[15] ——, “Task planning with a weighted functional object-oriented

network,” 2021.
[16] K. Yamazaki et al., “Recognition and manipulation integration for a

daily assistive robot working on kitchen environments,” in Proc. of

IEEE Int. Conf. on Robotics and Biomimetics, 2010, pp. 196–201.
[17] X. Mu, Y. Xue, and Y.-B. Jia, “Robotic cutting: Mechanics and

control of knife motion,” in Proc. of IEEE Int. Conf. on Robotics

and Automation, 2019, pp. 3066–3072.

cooking pan
place : stove
inside : oil

oil
place : cooking pan

state : melted

stove
place : work space
state : high heat

on_top : cooking pan

pour
T : 9

stir fry
T : 10

cut(slice)
T : 7

carrot
place : cutting board

state : cut(slice)

cutting board
place : work space

inside : carrot

knife
place : R-hand

state : semi-clean

R-hand
inside : knife

tong
place : L-hand

state : semi-clean

L-hand
inside : tong

release
T : 8

release
T : 8

carrot
place : cutting board

state : whole

cutting board
place : work space

inside : carrot

knife
place : R-hand
state : clean

R-hand
inside : knife

tong
place : L-hand
state : clean

L-hand
inside : tong

carrot
place : cooking pan

state : stir fried

cooking pan
place : stove

inside : oil , carrot

spatula
place : L-hand

state : semi-clean

stove
place : work space
state : high heat

on_top : cooking pan

L-hand
inside : spatula

oil
place : cooking pan

state : stir fried

carrot
place : cooking pan

state : cut(slice)

cooking pan
place : stove

inside : oil , carrot

spatula
place : L-hand
state : clean

L-hand
inside : spatula

pick and place
T : 5

R-hand
inside : none

cutting board
place : work space

inside : none

grasp
T : 5

stand for knife
place : storage space (right)

on_top : none

knife
place : stand for knife

state : clean

stand for knife
place : storage space (right)

on_top : knife

L-hand
inside : none

plate
place : storage space (left)

inside : none

grasp
T : 6

carrot
place : plate
state : whole

plate
place : storage space (left)

inside : carrot

stand for tong
place : storage space (left)

on_top : none

tong
place : stand for tong

state : clean

stand for tong
place : storage space (left)

on_top : tong

knife
place : stand for knife

state : semi-clean

stand for knife
place : storage space (right)

on_top : knife

R-hand
inside : none

tong
place : stand for tong

state : semi-clean

stand for tong
place : storage space (left)

on_top : tong

L-hand
inside : none

grasp
T : 9

cutting board
place : work space

inside : none

R-hand
inside : none

stand for spatula
place : storage space (left)

on_top : none

spatula
place : stand for spatula

state : clean

stand for spatula
place : storage space (left)

on_top : spatula

② ③ ④⑤① ⑥

② ③ ④⑤① ⑥

heat(high heat)
T : 3

oil
place : cooking pan

state : whole

cooking pan
place : stove
inside : oil

stove
place : work space
state : high heat

on_top : cooking pan

pick and place
T : 0

cooking pan
place : stove
inside : none

L-hand
inside : none

stove
place : work space

state : off
on_top : cooking pan

pour
T : 1

turn on
T : 2

cooking pan
place : storage space (left)

inside : none

stove
place : work space

state : off
on_top : none

L-hand
inside : none

cooking pan
place : stove
inside : oil

L-hand
inside : none

cup
place : storage space (left)

inside : none

oil
place : cup

state : whole

cup
place : storage space (left)

inside : oil

R-hand
inside : none

pick and place
T : 4

R-hand
inside : none

cutting board
place : storage space (right)

inside : none

Fig. 19: Graph network representing the work sequence. Red motion nodes (motions described in the recipe), blue motion
nodes (motions not described in the recipe).

stir fry(T : 10)

carrot
place : cooking pan

state : stir fried
pos : [500,-6,1137]

rot : [0,0,0]

cooking pan
place : stove

inside : oil , carrot
pos : [500,74,1150]

rot : [0,0,180]

spatula
place : L-hand

state : semi-clean
pos : [503,-8,1250]

rot : [-0,2,-92]

stove
place : work space
state : high heat

on_top : cooking pan
pos : [560,-101,1110]

rot : [0,0,90]

L-hand
inside : spatula

armpos : [53,-188,-59,278,283,119]
eepos : [505,-10,1355]

eerot : [105,99,41]

oil
place : cooking pan

state : stir fried
pos : [500,-6,1137]

rot : [3,-2,178]

carrot
place : cooking pan

state : cut(slice)
pos : [500,-6,1137]

rot : [0,0,0]

cooking pan
place : stove

inside : oil , carrot
pos : [500,74,1150]

rot : [0,0,180]

spatula
place : L-hand
state : clean

pos : [510,481,1360]
rot : [-0,2,-92]

stove
place : work space
state : high heat

on_top : cooking pan
pos : [560,-101,1110]

rot : [0,0,90]

L-hand
inside : spatula

armpos : [-10,-123,-100,264,231,156]
eepos : [512,479,1425]

eerot : [105,99,41]

oil
place : cooking pan

state : melted
pos : [500,-6,1137]

rot : [3,-2,178]

pour(T : 9)

cutting board
place : work space

inside : none
pos : [329,-120,1121]

rot : [0,0,0]

carrot
place : cooking pan

state : cut(slice)
pos : [500,-6,1137]

rot : [0,0,0]

cooking pan
place : stove

inside : oil , carrot
pos : [500,74,1150]

rot : [0,0,180]

R-hand
inside : none

armpos : [-6,-67,106,-116,156,-76]
eepos : [260,-232,1319]

eerot : [-112,8,-35]

cutting board
place : work space

inside : carrot
pos : [329,-120,1121]

rot : [0,0,0]

carrot
place : cutting board

state : cut(slice)
pos : [329,-8,1110]

rot : [0,0,0]

cooking pan
place : stove
inside : oil

pos : [500,74,1150]
rot : [0,0,180]

R-hand
inside : none

armpos : [0,-54,92,-128,137,0]
eepos : [400,-481,1262]

eerot : [-126,126,1]

grasp(T : 9)

spatula
place : L-hand
state : clean

pos : [510,481,1360]
rot : [-0,2,-92]

stand for spatula
place : storage space (left)

on_top : none
pos : [510,481,1210]

rot : [-0,2,-92]

L-hand
inside : spatula

armpos : [-10,-123,-100,264,231,156]
eepos : [512,479,1425]

eerot : [105,99,41]

spatula
place : stand for spatula

state : clean
pos : [510,481,1210]

rot : [-0,2,-92]

stand for spatula
place : storage space (left)

on_top : spatula
pos : [510,481,1210]

rot : [-0,2,-92]

L-hand
inside : none

armpos : [6,-172,-49,305,225,172]
eepos : [496,330,1350]

eerot : [127,127,-0]

(c.1) (c.2) (c.3) (d.1) (d.2) (d.3)

Fig. 20: Robot execution of a task based on a graph network.

[18] A. Yamaguchi and C. G. Atkeson, “Stereo vision of liquid and particle
flow for robot pouring,” in Proc. of IEEE-RAS Int. Conf. on Humanoid

Robots, 2016, pp. 1173–1180.
[19] M. Inagawa, T. Takei, and E. Imanishi, “Japanese recipe interpre-

tation for motion process generation of cooking robot,” in Proc. of

IEEE/SICE Int. Symposium on System Integration.
[20] M. Beetz et al., “Robotic roommates making pancakes,” in Proc. of

IEEE-RAS Int. Conf. on Humanoid Robots, 2011, pp. 529–536.
[21] G. Lisca, D. Nyga, F. Bálint-Benczédi, H. Langer, and M. Beetz,

“Towards robots conducting chemical experiments,” Proc. of IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, pp. 5202–5208, 2015.
[22] G. Kazhoyan and M. Beetz, “Programming robotic agents with action

descriptions,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, 2017.
[23] H. Chen et al., “Enabling robots to understand incomplete natural

language instructions using commonsense reasoning,” in Proc. of IEEE

Int. Conf. on Robotics and Automation, 2020, pp. 1963–1969.
[24] D. Das et al., “Frame-semantic parsing,” Computational linguistics,

vol. 40, no. 1, pp. 9–56, 2014.
[25] R. Paul, “Classifying cooking object’s state using a tuned vgg convo-

lutional neural network,” arXiv preprint arXiv:1805.09391, 2018.
[26] A. B. Jelodar, M. S. Salekin, and Y. Sun, “Identifying object states in

cooking-related images,” arXiv preprint arXiv:1805.06956, 2018.
[27] “Rakuten Group, Inc.: Rakuten Recipe data. Informatics Research Data

Repository, National Institute of Informatics. (dataset). ,” https://doi.
org/10.32130/idr.2.4.

[28] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proc. of IEEE Int. Conf. on Robotics

and Automation, vol. 2, 2000, pp. 995–1001.

