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Abstract— We propose a food arrangement framework for a
robot to automatically serve meals. We start from the premise
that anybody knows how to arrange food. Based on this, we use
a Convolutional Neural Network (CNN) to evaluate how good
a food arrangement is. The CNN is trained using a dataset
gathered through Amazon Mechanical Turk (AMT), where people
are asked to choose the best food arrangement between a
pair of pictures. The food arrangement and rearrangement is
done entirely virtual through image processing. The initial food
placement is random and evaluated by the CNN. If this evaluation
is under a given threshold, the position of some ingredients will be
changed according to the rearrangement algorithm we developed.
For this algorithm we tested two different strategies for finding
a relocation together with two different approaches for deciding
which food to relocate. After the rearrangement is done, the CNN
will evaluate again the food arrangement. The previous steps will
be repeated until the food arrangement evaluation is beyond the
given threshold. The resulting arrangement will be given to the
robot for its actual execution. We evaluated our framework using
two different sets of meals. We demonstrate that a UR3 robot is
capable of serving a steak meal using a spatula-like end-effector.

I. INTRODUCTION

Nowadays, the existence of robots in several scenarios is
becoming familiar in our society, e. g., communication robots,
cleaning robots, etc. In recent years, specialized cooking robots
such as OctoChef [1] and the Okonomiyaki cooking robot
[2] have been developed for business purposes. Therefore,
these robots are programmed to prepare a single kind of meal.
Contrary to this, our aim is to develop a cooking robot able to
cook and serve a broad range of meals for household use.
A robot that could be able to prepare and put on a plate
any kind of meal and bring it to the dinning table. Serving
food on a plate might seem trivial, nevertheless an important
part of serving a meal is its presentation. Michel et al. [3]
showed that visual presentation influences the perceived taste
of a salad for three different presentations using the exact same
ingredients, the salad with the better taste was that with an
artistic presentation. Most people know how to nicely arrange
food on a plate. Although nicely could be subjective, there
is common sense about this. Why? Because we unconsciously
learn this through observation of previous meals. However, this
is a non trivial task for a robot. Having this in mind, we focus
on how to transfer this common knowledge that a human has
about how to arrange food on a plate to a robot.
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Fig. 1: Outline of the proposed food arrangement framework.

In this paper, we propose a food arrangement framework
for a robot to carry out the final arrangement of food in
plates, as shown in Fig. 1. We trained a Convolutional Neural
Network (CNN) using a dataset gathered through Amazon
Mechanical Turk (AMT), where people are asked to choose
the best food arrangement between a pair of pictures. Like
this, the CNN learns the concept of a good food arrangement
based on people’s choices. Our framework’s input are the
food ingredients for a given dish, and it starts with a random
placement of them. Then, the CNN evaluates how good the
initial arrangement is. If the evaluation is under a given
threshold, then the system will move some of the ingredients
according to our rearrangement algorithm. As it would be
messy to be rearranging the actual food. The food arrangement
is simulated using image processing. After a rearrangement
has been done, the CNN will evaluate again how good the
arrangement is. This will be repeated until the evaluation by
the CNN surpasses a given threshold. Once the arrangement is
good enough, the position of the food will be sent to the robot
for its actual execution.

This paper is organized as follows: in section II we briefly
review related work to cooking robots. In section III we
describe our framework for arranging food on a plate. In
section IV we show the results obtained using two different
set of meals, and we show how a robot using a spatula-like
gripper can place food on a plate as desired. Finally, in section
V we give the conclusions of this paper.

II. RELATED WORK

Regarding meal preparation, heretofore, robotics research
have mainly focus on recognition and cutting of ingredients,
tool manipulation, among others. Yamazaki et al. used a force



sensor and simple image features to detect vegetables and a
cutting board to cut them [4]. Kranz et al. implemented a
networked sensing system to gather information about activities
done in the kitchen, namely cutting different ingredients; their
system is able to recognize what kind of ingredient was cut
[5]. Kunze et al. developed a system that enables a robot to de-
termine action parameters for cracking an egg, pouring liquids
and making a pancake through the use of logic programming
and simulation-based temporal projection [6], [7]. Haidu et al.
developed a game for the extraction and learning of knowledge
on how to pour and flip a pancake [8]. Bollini et al. proposed
a system that is able to obtained recipes from the internet and
translate them into robot motions for the robot to execute them
[9]. Paul et al. [10] and Jelodar et al. [11] used CNNs for
the classification and identification, respectively, of cooking
object’s states. The only similar work that we could find, uses
Imitation Learning and an expert’s food arrangement data for
the robot to learn how to arrange the placement of Japanese
Tempura [12]. However, their method requires the 3D model
data of the ingredients to be arranged while our method uses
simple RGB images and can handle several combinations of
ingredients.

Regarding professional cooking arrangement, we consulted
with a professional chef about the possible existence of rules.
However, the answer was that there are no written rules but
common sense in the color combination, overlapping, etc.

III. FOOD ARRANGEMENT FRAMEWORK

In this section, we describe the proposed framework for
serving a meal considering its presentation. Our framework
is mainly composed of a CNN trained to evaluate how good

a food arrangement is, and a rearrangement algorithm to
modify the position of the food to increase the score of the
arrangement.

A. Arrangement Evaluation

As explained in section I, we focus on how to transfer to
the robot, the knowledge that humans have on how to arrange
food on a plate. We start from the premise that making a good

food presentation is part of common knowledge. We build the
hypothesis that a CNN is able to learn a good food arrangement
and therefore evaluate a given food arrangement by giving it
a score. For the CNN to be able to give a numerical score,
we need a dataset compose of images of food arrangements
with their respective numerical score. We prepare a dataset
with two main dishes: a steak and a Salisbury steak; and with
three different garnishes to be picked from carrots, corn, french
fries, tomatoes and broccoli, using food samples1. All the food
samples have at least 3 different orientations/configurations,
except for the steak, which due to its size, only one was
used. Fig. 2 shows one example of each food used. The 2
main dishes with the 5 garnishes, gives us 2 ⇥

�5
3

�
= 20

different combinations of food arrangements. The data needed
to train the CNN was collected using AMT. To avoid as

1https://en.wikipedia.org/wiki/Food_model

!"# !"#

Fig. 2: Examples of food sample images used to create the food
arrangement dataset. In (a) main dish, and in (b) garnishes.

Fig. 3: An example of the questionnaire made in AMT.

Fig. 4: Examples of the food arrangement images created. On
the top row using the steak as main dish and on the bottom
row using the Salisbury steak as main dish.

much as possible a subjective evaluation, instead of asking
people directly to give a score to each arrangement, we asked
people to choose between a pair of arrangements with the same
combination of food.

As shown in Fig. 3, we created a questionnaire with five
choices, all of them relative to two images. We also asked the
AMT’s crowdworkers to avoid as much as possible using the
option “not sure”, since in previous recollection of data most
of their answers were “not sure” (it is not easy to get people to
answer seriously, since the faster they answer the faster they



TABLE I: Score given to each image according to the answer
of the questionnaire.

Option Left Right
image image

Left image is better 1 0
Left image is slightly better 0.75 0.25
Not sure 0.5 0.5
Right image is slightly better 0.25 0.75
Right image is better 0 1

finish and get paid). The answers collected were converted
to scores between 0 and 1 according to Table I. As we
prepared 60 different arrangements per food combination, we
obtained 59 relative evaluations for each arrangement. For each
food combination, 25% of the arrangements were intentionally
created as good arrangements. The rest were randomly created;
i.e., the orientation/configuration of each garnish was randomly
chosen and placed randomly. Fig. 4 shows some examples
of the food arrangements used. We compute the average of
these evaluations to obtained a single numerical score per food
arrangement. Our dataset is composed of 1200 images. The
90% of the dataset is used for training, from which 10% is
used for validation; the remaining 10% is used for testing.

We use a CNN with few layers for the sake of learning time.
Our CNN is composed of 2 convolutional layers, followed by
a max pooling layer, and another pair of convolutional-max
pooling layers, that are connected to 2 fully connected layers,
as illustrated in Fig. 1. The absolute error of the average over
the test data obtained was about 0.1. The trained CNN will be
used to evaluate food arrangements.

B. Rearrangement Algorithm

The algorithm implemented for rearranging food placed on
a plate is shown in Algorithm 1. As inputs it receives the
initial randomly generated food arrangement; i.e., an array of
2D positions of the top-left corner of the box bounding the
food, and the food used as an array consisting of one main
dish and 3 different garnishes. We set a maximum number
of N loops for the algorithm to find a good arrangement. The
algorithm first evaluates the initial arrangement and compares it
to a given threshold, if the arrangement is below this threshold,
we proceed to move one of the garnishes, since the main dish
is never moved. With a 10% probability the algorithm will
randomly chose one garnish and move it to three different
places randomly over the space of the plate excluding the area
of the main dish (randomMove function) without checking
for overlapping with the other garnishes, as illustrated in
Fig. 5(b). The randomMove function will return only the
food position that yielded the best arrangement score out of
the three places tested. Otherwise, with a 90% probability the
algorithm will call the function bestNeighbor, for which
we tested two different strategies.

In the first one, called bestNeighbor-A, the garnish to
be moved is chosen randomly. Then, based on the garnish
original position, we compute eight neighbors in eight different
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Fig. 5: Possible displacements of garnish. In (a) when using
bestNeighbor, and in (b) when using randomMove.

directions, as illustrated in Fig. 5(a), with a Euclidean distance
of 40 pixels. From these positions we add a random position
between �10 and 10 pixels in each axis for all the eight
neighbors (directions). Then, we compute the score of the food
arrangements using each of the eight neighbors positions for
the garnish to be moved, except for those that lay outside the
plate surface. The other two garnishes are left on their original
positions. The function bestNeighbor-A will return the
food position that yielded the best arrangement score.

In the second one, called bestNeighbor-B, the garnish
to be moved is also chosen randomly. Then, based on the
garnish original position, we compute eight neighbors using
polar coordinates with ✓’s in the same eight different directions
as in bestNeighbor-A, and r = random(1, 50) pixels
for each neighbor. Then, we compute the score of the food

Algorithm 1 Food rearrangement
1: n 0
2: P0  initial 2D position of food
3: F type of food
4: img  CreateImage(P0, F)
5: score Evaluate(img)
6: while n < N do
7: if score � good then break
8: else
9: action random(0.0, 1.0)

10: if action > 0.1 then
11: P bestNeighbor(P0)
12: else
13: P randomMove(P0)
14: action 0
15: end if
16: end if
17: img  CreateImage(P, F)
18: newScore Evaluate(img)
19: if newScore > score or (action = 0 and

random(0.0, 1.0) < 0.5 and score < 0.7) then
20: score newScore
21: P0  P
22: end if
23: n n+ 1
24: end while



arrangements using each of the eight neighbors positions,
except for those that lay outside the plate surface. The function
bestNeighbor-B will return the food position that yielded
the best arrangement score.

After the call to bestNeighbor or randomMove, the
algorithm will compute the newScore of the food arrangement
returned. If the newScore is greater than the original score,
the algorithm will update the positions of the food and the
score (lines: 20-21). Or, when the garnished was randomly
moved and the score is under 0.7, with a 50% of probability,
the algorithm will update the positions of the food and the
score. Otherwise, it will keep the original positions and score.
Then, the loop begins again.

For the second loop onwards, we tested two different ap-
proaches to which we refer as “random” and “order”. In the
random approach, the garnished to be moved will always be
chosen randomly. On the other hand, in the order approach,
the bestNeighbor function will move the following garnish
to that randomly chosen in the first loop. The order of the
garnishes is given by the array F that contains the type of
food. In subsequent loops (n > 2), it will move the following
garnish to that of the previous loop. If it has already use all the
three garnishes, it will go back to the first garnish moved and
repeat until the obtained arrangement is updated (line 21) or
the algorithm finishes. However, at every loop after the food
arrangement has been updated (i.e., there was an improvement
in score but it is still under the given threshold, line 21) the
garnish to be moved will be picked randomly again. The aim
of this approach is that if moving one garnish did not improved
the arrangement score, then try with the next, instead of trying
randomly. But, after having improve the arrangement, then try
again randomly at first and from there go in order if needed.

It should be noted that the randomMove function will
always randomly chose the garnish to be moved. The algorithm
finishes when the food arrangement score is above or equal to
the threshold given or when arriving to the maximum number
of loops (N ) allowed. The final food placement is sent to the
robot, for the robot to place each food on its respective position
on the plate, as illustrated in Fig. 1.

IV. EXPERIMENTAL RESULTS

We carried out several tests to demonstrate the validity of
the proposed food arrangement framework. We use 10 of the
20 possible combinations of main dish and garnishes, and
ran 10 tests per combination. We also test the two strategies:
bestNeighborA and B, and the two approaches: random and
order, proposed for the rearrangement algorithm presented in
section III-B, for each of the tests. For all the tests, we use N =
100 and the threshold for a good arrangement was set to 0.75.
We recorded the initial score s0 of the randomly generated
arrangement and the final score sf after the rearrangement
algorithm finished. We also recorded the number of loops (`u)
in which the food arrangement was updated—i.e., the number
of loops that Algorithm 1 passes through line 21—and the
total number of loops (`t  N ) needed to generate a good

TABLE II: Combinations of food used in the validation exper-
iments.

Combi- Main Garnishes
nation dish 1 2 3

1 Steak Carrot Tomato Broccoli
2 Steak French fries Carrot Tomato
3 Steak Corn Carrot Broccoli
4 Steak Corn Carrot Tomato
5 Steak Corn French fries Tomato

6 Salisbury French fries Carrot Broccoli
7 Salisbury Corn Tomato Broccoli
8 Salisbury Corn French fries Broccoli
9 Salisbury Corn French fries Tomato
10 Salisbury Corn French fries Carrot
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Fig. 6: Success rate average results over 10 tests per food
combination per tested food arrangement strategy.
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Fig. 7: Efficiency average results over 10 tests per food
combination per tested food arrangement strategy.

arrangement in order to analyze the efficiency of the proposed
algorithm.

The combinations used are summarized in Table II, where
we chose 5 combinations per main dish, steak (S), and Salis-
bury steak (SS), and the garnishes corn (K), french fries (FF),
carrot (C), tomato (T) and broccoli (B) as diverse as possible.
The garnishes are in the order used in the array of type of food
F.

We tested the different strategies proposed in section
III-B; i.e., when using function bestNeighbor-A and
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Fig. 8: Food arrangement results examples. In (a) the initial
arrangement and in (b) the final arrangement.

the random approach (A-random), when using function
bestNeighbor-A and the order approach (A-order), when
using function bestNeighbor-B and the random approach
(B-random) and when using function bestNeighbor-B
and the order approach (B-order). The results obtained are
summarized in the graphs shown in Figures 6 and 7 for the
success rate and the efficiency (`u/`t express in percentage),
respectively. The numbers in the horizontal axis indicate the
food combination used, as numbered in Table II. From these
results, it can be seen that the function bestNeighbor-B
in combination with the random approach yielded the best
success rate overall tested food combinations, and also the best
efficiency. It can also be observed that for some combinations
the success rate was particularly low for all the tested methods,
like No. 7 which was the worst, with an average over all
methods of 0.37); while for combinations 1, 3, 4 and 9, the
success rate was � 0.8 on average over all the tested methods.

Fig. 8 shows the result of one test of each of the above men-
tioned food combinations when using the bestNeighbor-B
in combination with the random approach. For combination 7,
it can be seen that the corn configuration used, occupies a
considerably large area of the plate, thus reducing the number
of possible placements which makes it hard to rearrange in
comparison with smaller garnishes like the broccoli or tomato,
or with other corn configurations, like combinations 3 or 4. It
can also be observed that overlap of less than a half of the
garnish’s surface among garnishes or between the garnish and
the main dish was evaluated as good according to the collected
dataset. Fig. 10 shows the food arrangements obtained at every
updated loop using Combination 9, for the same test shown in
Fig. 8. As it can be observed in (a), at the beginning the score
is low since two of the three garnishes are overlapped with the
main dish. The score improves as the corn is removed from
the top of the main dish (b). In loop 4 (Fig. 10-e) a random
action was taken and although the score is not greater than
the previous one, the arrangement was updated (line: 19 of
Algorithm 1). Then, as the tomato is removed from the top of
the main dish (f), the score approaches the given threshold for
a good arrangement. In the next loop (g), as the corn is moved
horizontally towards the center of the plate, the score improves
but not enough. Similarly, in the next loop (h), the corn is
moved vertically towards the center of the plate which barely
increases the score. Finally, in the last loop (i), the french fries
are moved vertically towards the center of the plate which is
good enough to increase the score above the given threshold.
These means, that in the dataset collected, food arrangements
with the garnishes near the edge of the plate were not evaluated
as good as those with the garnishes placed towards the center
of the plate.

Fig. 9 shows snapshots of a UR3 robot placing food on
a plate according to the arrange generated with the proposed
framework for Combination 1. The robot uses a spatula-like
gripper [13] for picking the food samples. As it can be observed
the robot is able to place the food on the desired locations; this
means that we can use the proposed algorithm for preparing a
good food arrangement using a simple gripper.

V. CONCLUSIONS

This paper proposed a food arrangement framework for a
robot to carry out the final arrangement of food served on
plates. We constructed a food arrangement dataset using food
samples (i.e. fake food) and Amazon Mechanical Turk, to
make a relative evaluation on how good food arrangements are,
avoiding subjective evaluations. We used this dataset to train a
CNN for numerically evaluating images of food arrangements.
We proposed a rearrangement algorithm for generating a good

food arrangement according to the CNN evaluation. Using
ten different combinations of main dish and garnishes, we
demonstrated the validity of the proposed algorithm, and
showed that the function bestNeighbor-B in combination
with the random approach yielded the best success rate among
the tested methods. Finally, we showed that it is possible for



Fig. 9: Food placement by a UR3 robot when using food Combination 1.
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Fig. 10: Food rearrangement process when using food Combi-
nation 9.

a robot to place the food according to the food arrangement
obtained with the proposed algorithm.

In the future, we would like to improved the accuracy of the
CNN used to evaluate food arrangements, ideally gathering
real pictures instead of using food samples, and increasing
the variety of food used. We would also like to test our
framework with unseen ingredients in the dataset. Finally, we

would like to try reinforcement learning algorithms for the food
rearrangement to be more efficient.
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