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Abstract

Robots are starting to take relevant and complex roles in real-world scenarios.

However, society’s long-term adoption of these machines will depend on the ca-

pacity of robotics systems to satisfy not only performance-centered goals but

also human-centered. Unfortunately, most projects outside the social robotics

community ignore or minimize the importance of human-centered aspects. This

article contributes to the robotics community by presenting: i) a performance-

centered taxonomy of measures and metrics for Human-Robot Interaction (HRI)

and ii) a holistic model for HRI that puts human well-being at the center. We

built this taxonomy and model based on the results of a systematic literature

review of research articles focused on human-robot collaboration. For this, we

performed a systematic search in relevant databases for robotics (Science Di-

rect, IEEE Xplore, ACM digital library, and Springer Link). The results of this

search were 75 peer-reviewed research articles published until 2020. To help

practitioners and new researchers in the area, we also briefly explain complex

⇤Corresponding author
Email address: enriquecoronadozu@gmail.com (Enrique Coronado)

Preprint submitted to Journal of LATEX Templates April 15, 2022

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license  
https://creativecommons.org/licenses/by-nc-nd/4.0/



and overlapped terms in many cases misused in di↵erent disciplines. Finally, we

identify five emergent research topics and open challenges in the area. The HRI

model and taxonomy presented in this article can help researchers and practi-

tioners to select suitable tools or methods for evaluating performance-centered

and human-centered aspects in applications composed of teams of robots and

humans.

Keywords: Human-Robot Interaction, Human-Robot Collaboration, Metrics,

Robotics, Industry 5.0, Society 5.0
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1. Introduction

Nowadays, many industries adopt the Industry 4.0 paradigm, also referred

to as Smart Manufacturing or Industrial Internet of Things. Industry 4.0 fo-

cuses on the digital transformation of manufacturing and production processes

empowered by emergent technologies such as Virtual Reality (VR), autonomous5

robots, the Internet of Things (IoT), Big Data, and Cloud Computing [1, 2].

The goal of Industry 4.0 is analogous to previous revolutions: “to increase pro-

ductivity and achieve mass production using innovative technology” [3]. To

reach this goal, previous revolutions used machines powered by steam (Industry

1.0), electricity (Industry 2.0), as well as electronics and Information Technol-10

ogy (IT) artifacts, such as Programmable Logic Controllers (PLC) (Industry

3.0) [3, 1]. Therefore, Industry 4.0 and previous revolutions can be considered

as technology-driven [1]. While these technological transitions have been a valu-

able source of economic growth for decades, the continuous increase of social

and planetary problems related to the existing industrial activities are starting15

to push for a change of paradigms [4]. For example, and contrary to the op-

timistic predictions often done in academia, reports, such as [5, 6], argue that

automation technology has played a major role in wage inequality over the last

decades. Due to this, there exists a low inclination to accept and trust automa-

tion technology [7, 8]. This inclination is mostly present among low-skilled and20
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middle-skilled workers (i.e., those carrying out routine-based tasks), who can

see machines as possible threats to their jobs, identity, uniqueness, and safety

[8]. Consequently, some social experts and futurists argue that “robots are tak-

ing the human jobs and are moving society towards more inequality” [9, 10].

Another consequence of the increasing industrial activity is the rise in pollution-25

related chronic diseases, as well as contamination of air, water, and soil, and

the over-exploitation of natural resources [11, 12]. Therefore, the creation of

counter-measures to a↵ront current sustainability and social fairness problems

caused by industrial activity and directions will be one of the most relevant

research topics for the next decades.30

1.1. Industry 5.0 and Society 5.0

Futurists and governments are starting to discuss new paradigms for solving

relevant social and planetary problems. In this context, two of the most relevant

paradigms are Industry 5.0 [4] and Society 5.0 [13]. On the one hand, Indus-

try 5.0 is a very recent concept adopted by the European Commission whose35

vision is to reach human-centered, sustainable and resilient industries. This ap-

proach contrasts with the machine-centered or full-automation principle of past

industrial revolutions, where the main motivation is to reach mass production,

therefore underestimating planetary and human costs. The human-centered

principle aims to respect the role, talents, and rights of humans by putting their40

general well-being at the same level of importance as the optimization of in-

dustrial processes. This principle proposes the introduction of technologies and

tools able to empower and promote the talents and diversity of industrial work-

ers. Systems developed with these technologies must also safeguard fundamental

human rights (e.g., autonomy, dignity, and privacy), create inclusive work envi-45

ronments, prioritize human mental and physical health as well as enhance job

e�ciency, safety, and satisfaction [4, 1]. The sustainable principle focuses on

the creation of production processes able to respect the planetary boundaries

through the re-use and recycling of natural resources, as well as the reduction

of industrial waste [1]. Finally, the resilient principle focuses on the creation of50
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more agile, flexible, and adaptable industries [4]. On the other hand, Society 5.0

is a related concept adopted and promoted in Japan. While Industry 5.0 focuses

on the manufacturing sector, Society 5.0 considers a larger variety of scenarios.

Similar to Industry 5.0, Society 5.0 is encouraged within the human-centered

and sustainability principles. For this, Society 5.0 promotes the integration of55

cyberspaces (i.e., the virtual world) with physical spaces (i.e., the real world)

as a key solution to enable both economic advancement and solve social issues

[13]. While some works in the literature consider human-centered approaches

and Human-Robot Collaboration as an extension or emergent trend of Industry

4.0, this article makes the distinctions between Industry 4.0 and Industry 5.060

according to [4, 3, 1, 14]. These di↵erences are summarized in Table 1. Unlike

Industry 4.0 predecessors, which are technology-driven, Industry 5.0 is identified

as a value-driven paradigm that “requires the industry to re-think its position

and role in society” [1]. Nahavandi [14] provides a more energetic distinction

and states that the biggest problem of Industry 4.0 is that “its sole focus is to65

improve the e�ciency of the process, and it thereby inadvertently ignores the

human cost resulting from the optimization of processes.” Maddikunta et al. in

[15] describe that while the main priority of Industry 4.0 is process automation,

which intrinsically produces a reduction of human intervention in the manu-

facturing processes, Industry 5.0 can bring back the human force to factories70

and promote more skilled jobs compared to Industry 4.0. In these human-robot

collaborative scenarios promoted by Industry 5.0, the repetitive, unsafe, phys-

ically demanding tasks are assigned to robots, while humans will be in charge

of critical thinking and customization [15, 14].

1.2. Measures and metrics for Human-Robot Interaction75

Human-Robot Interaction (HRI) is one of the core technologies of Industry

4.0 and Industry 5.0. When implementing an HRI system, developers must eval-

uate how well the proposed system meets individual, collective, and production

needs or objectives. In this context, measures and metrics take a keystone role

not only to validate the suitability of robotics systems but to build indicators80
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Feature Industry 4.0 Industry 5.0 and Society 5.0

Motto Smart Manufacturing Human-Robot Co-working and

Bioeconomy

Motivation Reach mass-production and in-

crease economic benefits

Smart society, Social fairness,

Resilient industries, Human well-

being and Sustainability

Role of humans Humans are substituted by ma-

chines

Bring back the human force to

factories by respecting the tal-

ents, rights, needs, and identity

of humans

Core technologies Internet of Things, Cloud Com-

puting, Big Data, Robotics and

Artificial Intelligence

Human-Robot Collaboration,

Renewable Resources, Bionics,

Bio-inspired technologies and

Smart Materials

Typical scenario in

robotics

Interaction between humans and

machines/robots is limited to of-

fline programming and monitor-

ing

Highly adaptable and person-

alized scenarios, where humans

and robots can cooperate or col-

laborate to reach common goals

Table 1: Di↵erences between the general vision presented in Industry 4.0 and the keystone

aspects required to reach a Society/Industry 5.0

that can guide future implementations or development cycles. Therefore, the

identification, definition, and analysis of measures and metrics is an essential is-

sue not only for the progress of the HRI discipline but also any technological and

scientific area [16]. In this article, we a↵ront the challenges of identifying and

classifying measures and metrics enabling the evaluation of smart environments85

where humans and robots work together. For this, we performed a systematic

review of relevant and novel research articles using and proposing measures,

evaluation methods, and metrics for HRI with special attention to industrial

and collaborative scenarios. Unlike previous works where the concepts such as

measures, metrics, and indicators are often confused or used interchangeably,90

we start by presenting standard definitions and relevant models explaining these

terms’ meaning. We present the results of the systematic search from two points

of view. On the one hand, we present relevant measures and metrics that better

adapt to the classical performance-oriented objectives of Industry 4.0 and pre-

vious paradigms. For this, we classify measures and metrics using as inspiration95
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more general performance models described in the literature of related areas.

We also explain the di↵erence between the often confused terms of e�ciency,

e↵ectiveness, productivity and profitability. On the other hand, we propose a

novel holistic quality model for HRI that includes both performance-oriented

and human-centered attributes. For this, we start by presenting the mean-100

ing, interpretations and limits of human-centered areas, such as usability, user

experience, hedonomics and ergonomics. Then, we introduce a set of common

measures and metrics that have been used in the robotics community to measure

quality elements in these areas. The proposed HRI quality model is adapted

from the Human-Computer Interaction (HCI) literature and summarizes rel-105

evant attributes used in literature to evaluate interactive robotic systems in

industrial and collaborative contexts. Finally, we identify emergent approaches,

challenges, and research gaps towards evaluating Industry 5.0 scenarios.

1.3. Paper organization

This paper is structured as follows. Section 2 presents the theoretical back-110

ground and related works. Section 3 clarifies the contributions of this article.

Section 4 presents the methodology followed to perform the systematic search

of relevant research articles in the area of industrial and collaborative robotics.

Section 5 presents a taxonomy of objective and quantitative measures and met-

rics oriented to measure di↵erent performance aspects in an HRI system. Sec-115

tion 6 presents the proposed holistic model of HRI. Section 7 presents a set of

common human-centered metrics and quality factors according to the results

of the performed systematic review. Section 8 presents emergent approaches,

challenges, and research gaps. Conclusions follow.

2. Background and related work120

2.1. Concept of quality

Quality is an ambiguous and multidimensional concept that can vary ac-

cording to di↵erent interests and points of view [16]. As described in [16, 17],
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Figure 1: Quality in use model from ISO/IEC 25010

the di↵erent interpretations of quality can vary from intangible (i.e., that can

be judged but not measured) and philosophical to professional and objective125

perspectives. From the engineering and professional points of view, the concept

of quality usually refers to the degree to which a system, service, product, com-

ponent, or process is in conformance to specified requirements [16]. Moreover,

di↵erent approaches exist describing quality from the engineering point of view.

Some of the most popular are product-based quality (which defines a set of de-130

sired attributes for a product), process-based quality (in which the objective is

to achieve continuous process improvement), and user/customer based quality

(in which the objective is to build products or services that satisfy needs and

expectations) [17].

2.2. Quality models in software engineering135

The main idea behind the definition of a quality model is to break down the

complex and ambiguous concept of “quality” into a set of attributes, which can

be further broken down to build a hierarchy or taxonomy of factors, concepts

or metrics [17]. Relevant examples of quality models are described in ISO/IEC

25010 [18]. This standard presents two quality models for human-computer140

systems. On the one hand, the quality in use model described in ISO/IEC

25010 is composed of five main characteristics: satisfaction, e�ciency, freedom

from risk, e↵ectiveness and context coverage. Some of these characteristics are

divided into sub-characteristics as shown in figure 1. On the other hand, the

product quality model defined in ISO/IEC 25010 is composed of eight main145
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Figure 2: Product quality from ISO/IEC 25010

characteristics: Functional suitability, Performance e�ciency, Compatibility,

Usability, Reliability, Security, Maintainability and Portability. In this model,

each category is divided into sub-characteristics or concepts, as shown in figure

2. Characteristics of quality models presented in [18] are defined to be applicable

to both computer systems and software products. Other popular quality models150

for software systems are the McCall Model [19], the Boehm Model [20] and the

FURPS model [21, 22].

2.3. Quality models in Human-Robot Interaction

Unlike software and computer systems, the literature reports few attempts

to put quality factors, concepts, and metrics together for interactive robotics155

systems. Moreover, there is no standard of a widely adopted metrics toolkit or

a quality model enabling researchers and practitioners to benchmark HRI sys-

tems. In this context, one of the first attempts was made by Olsen & Goodrich

[23]. They present a list of six quality measures and metrics (task e↵ectiveness,

8



neglect tolerance, robot attention demand, free time, fan-out, and interaction160

e↵ort). Olsen & Goodrich highlight that these factors were selected to evalu-

ate the e↵ectiveness of robotics systems controlled by humans (such as remote

control of mobile robots). Subsequently, Goodrich et al. extended this list

in [24]. Measures and metrics presented in [24] are divided into two groups:

task-oriented metrics and common metrics. On the one hand, the task-oriented165

metrics group defines a set of tasks traditionally performed by mobile robots.

These tasks include navigation (i.e., the action of moving robots from a point A

to B), perception (i.e., enable robots to understand the environment), manage-

ment (i.e., enable the coordination of humans and robots), manipulation (i.e.,

enable robots to interact with the environment) and social skills (i.e., enable170

robots to exhibit social competencies). On the other hand, the common metrics

group evaluates the overall performance of HRI systems. This group of metrics

has three sub-groups: i) system performance or team performance, which de-

scribes how well the robots and humans perform in a team composition; ii) robot

performance, which describes the degree of awareness that robots have about175

humans and the environment, as well as their autonomy; and iii) operator per-

formance, which lists a set of factors that can impact how well humans perform

when using HRI systems. Common metrics proposed in [24] inspired many pos-

terior works, such as [25, 26, 27]. For example, [26] extended the classification

by presenting a tree-structured taxonomy of HRI metrics and measures. Their180

taxonomy displays a set of 42 elements classified into three main types: human-

related (composed of seven elements), robots-related (composed of six elements),

and system-related (composed of 28 elements). In 2018, a review of common

metrics for Human-Machine Teams (HMT) was presented in [25]. The focus of

this review included a broad type of machines, such as unmanned aerial vehi-185

cles, autonomous cars, robotic medical assistants, digital assistants, and cloud

assistants, among others. The main outcome of [25] was the proposal of 10 com-

mon metrics for specific application areas (search and identification, navigation,

ordnance disposal, geology, surveillance, and healthcare). According to their

authors, a key limitation of these metrics is that many of the proposed metrics190
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can be machine- or application-dependent and can have multiple interpreta-

tions for di↵erent types of applications, machines, or contexts. Most recently,

Marvel et al. presented in [27] an overview of challenges in the design of human-

machine-interfaces (HMI) and HRI in collaborative manufacturing applications.

Many of the metrics listed in [27] were obtained from [23, 24] and from ISO/IEC195

25010 quality models presented in section 2.2. They also identify a set of 41

subjective measurements for HRI. For this, the authors performed an analysis

of 290 articles from the 2015 and 2019 Association of Computing Machinery

(ACM) and Institute of Electrical and Electronics Engineers (IEEE) Interna-

tional Conference of HRI. Marvel et al. determine the final set of measures200

and metrics presented in [27] as performance metrics. Some of these previous

works identify evaluation methods and metrics grasping the human perspec-

tives and some hedonomics factors (e.g., pleasure and emotions) and recognize

their importance in social interactions with robots. However, they also tend

to underestimate the importance of these quality attributes in professional and205

industrial settings; therefore, contrasting with more recent and holistic e↵orts

in Human-Robot Collaboration. Some examples recently presented in [28, 29]

highlight the importance and e↵ects of hedonic attributes (e.g., emotions) in

Human-Robot Collaboration. Even when their authors do not explicitly indi-

cate it, it is possible to consider the previous works presented in this subsection210

as initial e↵orts to create performance-oriented quality models for HRI. In fact,

the first step toward creating a quality model is to discover all possible and

relevant quality factors, concepts, and metrics for the aimed product, service,

and system. While this work recognizes the e↵orts and arguments done in pre-

vious works extending classical performance-oriented models for HRI, we also215

explore a novel and holistic perspective beyond the traditional considerations

in robotics (being social robotics an exception). This approach recognizes the

importance of multi-disciplinary research tasks not only focused on optimizing

task performance but also considering human-centered and hedonics paradigms.
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3. Objectives and contributions220

In order to contribute to the HRI community in the creation of usable and

comprehensive quality models in HRI, the goals of this article are: (i) to iden-

tify relevant measures, metrics and quality aspects enabling the evaluation and

analysis of HRI systems in a systematic way; (ii) to propose a performance-

oriented taxonomy that considers objective and qualitative aspects for HRI;225

(iii) to propose a holistic quality model for HRI that not only considers per-

formance factors but also puts the human emotional, cognitive and physical

well-being at the center; and (iv) to discover emergent approaches, open issues,

research gaps and challenges in the context of manufacturing.

The first contribution of this article is:230

Through a systematic study, we identify common and relevant metrics for

HRI, focusing on robotics systems operating in co-existence, cooperation and

collaboration scenarios with humans.

This article presents three main di↵erences/novelties in comparison with

previous works described in section 2.3, as follows:235

• Initial works, such as [23, 24], have identified measures and metrics using

the experience of their authors. In this article, the process used for iden-

tifying metrics and quality factors from the literature follows a systematic

literature review approach.

• Some previous works have collected measures and metrics performing a240

search in the literature, such as [26, 27]. However, the search performed in

this article spans over a broader period and more databases. Unlike [26],

the search methodology is presented. We also provide relevant references

defining or using the identified measures and metrics. Unlike [27], the

search process in digital databases also includes objective measures and245

metrics.

• Unlike [25], the focus of this article is HRI systems and excludes other

types of machines or interfaces (e.g., software interfaces, autonomous cars,

11



and digital assistants); this enables the presentation of metrics that can

be suitable and applicable for di↵erent types of HRI systems.250

The second contribution of this article is defined as:

Through the analysis of the results obtained from the systematic search, we

propose a holistic model of quality factors that not only considers those aspects

used to evaluate task performance but also puts human well-being at the center.

As described in section 2.3, the main focus of related works was to identify255

those metrics or factors that objectively evaluate performance-related aspects.

This is due to the conventional vision often observed in Industry 4.0 (and pre-

vious paradigms), where the primary motivation is to reach mass production.

In section 6, we propose a holistic model of HRI quality factors and metrics

inspired by recent advances and new paradigms in some related areas such as260

ergonomics, usability engineering, and HCI.

We identified that a common source of misunderstanding in related works,

reviewed articles, and literature of di↵erent areas is the di↵erent interpretations

of some multidimensional, overlapped, or complex concepts. Examples are the

di↵erence between a) usability and user experience, b) performance and e�-265

ciency, and c) measure and metric. This issue can produce misconceptions or

confusion for new researchers. Therefore, in this article, we collect and present

the di↵erent meanings used in the literature and relevant models used to dif-

ferentiate them. Moreover, many measures and metrics presented in previous

works are ambiguous and lack suitable references that help in their understat-270

ing. In this article, we provide references to theoretical frameworks or practical

cases in HCI and HRI of common human-centered metrics that can be useful

for new researchers.

4. Methodology

Systematic studies are objective and strict research processes designed to275

give a broad overview of current trends, gaps, and challenges in a specific dis-

cipline [30]. They can also be used to structure a research area, synthesize evi-
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dence, and help in the position of research directions and activities [30, 31, 32].

We followed the methodology suggested in [31, 33] and updated in [30] for per-

forming systematic literature searches in software engineering. The main stages280

for conducting a systematic review according to [30, 33] are: (S1) identification

of the need for systematic review and development of a review protocol, (S2)

definition of research questions, (S3) definition of the search strategy, (S4) study

selection of criteria and procedures, (S5) study quality assessment, (S6) data

extraction and synthesis, and (S7) results’ report.285

4.1. Identification of the need for systematic review and development of a review

protocol

As described in section 2, previous works presented HRI taxonomies biased

by the experience of researchers as well as the conventional needs of previous

technological-driven paradigms. Moreover, many of them lack a detailed review290

protocol and documentation of the search process. Systematic reviews are suit-

able alternatives to reduce the risk of research bias as well as to provide more

comprehensive studies [34]. The review protocol was developed and approved

through online meetings between a postdoc student, one Assistant Professor,

two Senior Researchers, an Associate Professor, and a Distinguished Professor.295

As described in [30], the review protocol is composed of all the stages or el-

ements of the review plus some additional planning information (e.g., project

timetable).

4.2. Research questions

The research questions (RQs) guiding this article are:300

1. RQ1: What metrics and measures have been used or proposed in the lit-

erature to evaluate performance-related aspects in HRI and industrial en-

vironments and how they are applied?

2. RQ2: Which human-centered factors are commonly evaluated in indus-

trial environments?305
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Table 2: Dimensions used to obtain general information of measures and metrics

Label Dimension Objective

RQ1-D1 Name Identify each measure/metric

RQ1-D2 Category Identify the main aspect to evaluate

of each measure/metric

RQ1-D3 Target Identify where each measure/metric

is applied (human, robot or team)

RQ1-D4 Team com-

position

Identify the HRI configuration

3. RQ3: Which are the emergent approaches and possible research directions

toward the development of Industry 5.0 applications?

We used the results of this systematic search to build the taxonomy and

holistic model presented in sections 5 and 6, respectively. In this search, we

put special attention to those approaches and research articles in industrial and310

collaborative robotics. RQ1 aims to identify relevant and well-defined qual-

itative and objective measures and metrics for assessing performance-related

aspects in HRI. To classify and understand how they are applied, we propose

the dimensions defined in Table 2. RQ2 aims to identify frequently addressed

human-centered quality aspects in industrial environments. Therefore, we reg-315

istered the number of articles evaluating each identified quality factor to answer

this question. We introduce those human-centered factors classified as com-

monly evaluated in selected primary studies in section 7. Finally, RQ3 aims

to determine emergent aspects or methods in HRI. We present these challenges

from the point of view of the human-centered principles of Industry 5.0 and320

Society 5.0.

4.3. Definition of search strategy

We used the PICO (Population, Intervention, Comparison, and Outcomes)

method suggested in [31] to select the keywords for the systematic search. For

this work, population may refer to the main entities of this study: “humans”325

and “robots.” A related word to “robot” is “agent.” In the context of this article

and as suggested in [30], intervention can refer to the technology or procedure
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Database Search result Results of step 1 Results of step 2

IEEE Xplore 3,753 55 21

ACM Digital Library 11,811 27 5

Springer Link 9,963 87 17

Science Direct 9,598 46 34

Table 3: Number of studies per database and results after applying inclusion (step 1) and

exclusion (step 2) criteria

performed between humans and robots. In this case “interaction” and “col-

laboration.” In this study, we do not perform a comparison with alternative

interventions. Finally, expected outcomes are “metrics” for HRI. We consider330

“evaluation,” “validation”, and “measurements” as related concepts to “met-

rics” and “measures.” After contrasting the keywords obtained from the PICO

criteria with our general objective and our proposed research questions, we de-

fined the search string as (Metric OR Evaluation OR Measurement) AND (Col-

laboration OR Interaction) AND Robot AND Human. We refined this search335

string through di↵erent iterations, in which we discarded the keywords “vali-

dation,” “measures”, and “agent”. We used the final string to search research

articles in relevant databases for robotics, namely, IEEE Xplore, ACM Digi-

tal Library, Springer Link, and Science Direct. For this search, we considered

articles published during the entirety of 2020 and before and sorted them by rel-340

evance. We searched and collected research articles for their review in January

and February 2021. Reading and selection of articles by applying the inclusion

and exclusion criteria were performed in March and May, 2021. We performed

data collection, analysis of results, and classification of metrics and measures

for the proposed models between June and November 2021. Moreover, every345

two weeks, all authors of this article discussed the collected data and proposed

classifications in online meetings. Table 3 shows the results obtained from each

database.

4.4. Study selection, quality assessment and data extraction

The selection of articles for their review was composed of three steps. In step350

1 we excluded papers based on their abstract and title. In case of doubt, we
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proceed to read the whole paper. In this step we applied the following inclusion

criteria:

1. The focus of the article is to present an HRI/HRC framework or system for

industrial tasks and not in purely social or medical scenarios (e.g., assistive355

therapy, rehabilitation, surgical) and not other interactive machines such

as smart speakers, autonomous vehicles.

2. The article gathers or proposes tools or metrics for evaluating human-

centered or performance-related aspects of HRI/HRC applications.

For each database, the search process finished if after 50 consecutive articles360

none of them met some inclusion criteria. In step 2, results from step 1 are used

to apply the following exclusion criteria. In this step, we process to read the

full papers.

1. The article does not propose an HRI/HRC task and only evaluates the

technological suitability of some specific hardware (e.g., sensor, actuator)365

or algorithm (e.g., perception, decision-making, and control).

2. The article does not present or use measures, evaluation methods, or met-

rics for assessing its framework or application.

3. The article is not accessible in full-text, is not written in English, or is

a duplicate or extension of other previous studies of the same authors370

(i.e., presenting the same or similar results or frameworks in di↵erent

conferences or Journals).

In step 3, we conducted a quality assessment of the 77 resulting primary

studies in step 2. The next questions were used to assess the quality of the

identified primary studies:375

• Are the measurements, metrics, evaluation methods and methodology

clearly stated?

• Has the article 2 or more pages and is peer-reviewed?

• Has the article been cited by other articles?
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Figure 3: Number of included articles during the study selection process

Figure 3 shows the number of articles processed in each of the steps men-380

tioned before. The search and data extraction processes were performed by

authors 1 to 5. All the authors of this article reviewed the results. Papers

where di↵erences in the grasped or interpreted data occurred were discussed to

have a consensus between the authors on this article.

4.5. Limitations of the study and validity evaluation385

[30, 35] describes the most common factors that can limit the validity of a

systematic review. Factors that can be applied to this article are theoretical

validity and interpretive validity. The theoretical validity “is determined by the

ability that researchers have to grasp the intended data” [32]. As explained in

[36, 30] two systematic searches of the same topic can end up with di↵erent sets390

of articles. Therefore, some studies might have been missed. There is also a

potential threat during data extraction due to researcher bias. However, this

step is di�cult to eliminate completely, as it involves human judgment [30].

The interpretive validity “is achieved when the conclusions drawn are reason-

17



able given the data” [30]. Threats when interpreting data can be present due to395

researcher bias. To reduce interpretive validity and theoretical validity threats,

researchers experienced in di↵erent areas of robotics, such as HRC/HRI, Indus-

trial Robotics, Social Robotics, Software Architectures for Robotics, Human-

Centered Design, Safety in Human-Robot Collaboration, Motion Planning and

Artificial Intelligence, were involved in the validation of extracted data and400

conclusions.

5. Development of a performance-oriented model for Human-Robot

Interaction

As described in section 2, most taxonomies and classifications of metrics

and measures for HRI put process optimization at the center. In this context,405

Damacharla et al. [25] describes a methodology to build these type taxonomies,

which is composed of two basic steps. The first step identifies the agents involved

in the HRI task. These agents compose the taxonomy’s main categories (or

first level). In [24, 26, 25] these agents are selected as human (or operator),

robot (or machine), and team (or system). Marvel et al. [27] additionally410

include the category of process that includes economic and process performance

indicators. The second step is to identify high-level attributes that cluster a set

of related metrics. These attributes compose the sub-categories (or second level)

in the taxonomy. It is relevant to highlight that the final taxonomy proposed by

Damacharla et al. [25] does not have sub-categories. Instead, their taxonomy415

only includes ten common metrics distributed in the three main categories, four

metrics in the category of human, three metrics in the category of machine and

three metrics in the category of team. In the case of [26], the Human and Robot

categories do not present sub-categories. Table 4 shows the main categories and

sub-categories defined in previous works. The final level of the taxonomy (i.e.,420

the leaf nodes in a tree structure) displays the corresponding metric for each

category or sub-category. Due to the di↵erent structures of these taxonomies,

Table 4 only shows the number of metrics composing each main category.
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Authors Category Sub-category/Attributes # of metrics

Steinfeld et al. [24] System Quantitative performance, Subjective rating,

Utility of mixed initiative

7

Operator Accuracy of mental models, Workload, Situation

awareness

5

Robot Self-awareness, Human awareness, Autonomy 5

Murphy et al. [26] System Productivity, E�ciency, Reliability, Safety, Coac-

tivity

28

Human 7

Robot 6

Damacharla et al. [25] Team 3

Human 4

Machine 3

Marvel et al. [27] Team Quantitative performance, Utility of mixed initia-

tive, Qualitative performance, Team composition

11

Operator Situation awareness, Workload, Qualitative oper-

ator performance

8

Robot Self awareness, Human awareness, Features,

Safety, Qualitative Robot performance

11

Process Return on investment (ROI), Equipment e↵ec-

tiveness (OEE), Interface, Timing, Interface, Di-

agnostics and feedback

24

Table 4: Comparison between main categories and attributes proposed for taxonomies of

performance-oriented metric in HRI

In this article, the steps used to build this taxonomy are: 1) present a clear

vocabulary for avoiding misunderstandings presented in the literature and many425

previous works between complex and overlapped concepts; 2) identify the main

attributes composing the definition of performance used in the literature; 3)

identify the di↵erent types of measures and metrics used to evaluate performance

attributes from the results of the systematic review; and 4) identify in which

agent and scenarios these performance measures and metrics are applied.430

Figure 4 shows the taxonomy built by the proposed methodology. The cate-

gory classification are shown as marks colored according to the six performance-

oriented categories described in the following sections. The adjacent bars are

colored according to the corresponding team composition level.
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Metric name Category*1 Level *2 Metric name Category Level
Algorithm processing time

Assembly time

Average time to complete task

Collaboration time

Cooperation time

Coordination time

Duration (communication technology)

Functional delays

Human action time

Human idle time

Human operation time

Idle time

Interaction effort

Reaction time

Rescheduling time

Response time

Robot action time

Robot assembly time

Robot functional delay

Robot idle time

Robot operation time

Set-up time

System latency

Task completion time

Total assembly time

Total operation time

Throughput time

Assembly line cost

Cost for the HRC system

Number of skilled workers on the line

Safety based on number of collisions

Task allocation counts

Acceleration of human joints

Biosignals (temperature, tactile, etc.)

Biomechanical load

Ergonomics improvement

Muscle activity

Muscle fatigue for arm

Muscle manipulability

Ocular behavior

Skin potential response

Skin conductance

Avg/min of length between human hand and robot hand

Direction of reaction

HIC-based force related danger

Human-robot distance

Human overloading joint torques for whole body

Availability

Average robot velocity

Concentration or sustained attention

Concurrent activity

Concurrent motion

Cycle time

Degree of collaboration

Economic efficiency

Economic evaluation index

Efficiency based on mean speed of end effector

Efficiency based on net motion time

Energy load variance among the workers

Extent of usage (communication technology)

Interface teamwork efficiency

Layout efficiency

Mean speed of the end effector

Overall motion time

Production

Robot velocity

Technical evaluation index

Accuracy

Average prediction error

False negative interaction rate

False positive interaction rate

Interaction accuracy

Level of assignment

Level of interaction

Overall equipment effectiveness

Overall equipment effectiveness for HRI

Prediction error

Qualitative evaluation index

Real-time human’s fault

Real-time robot’s fault

*1 The marks show performance-oriented categories: Time behavior (   ), Process measures (   ), Physiological measures (   ), 

HR physical measures (   ), Efficiency (   ), and Effectiveness (   ).
*2 The bars show team composition levels. The three boxes are, from left to right, Hx1, Rx1, and Hxn and Rxm 

(H = Human, R = Robot). Green and red boxes represent applicable (   ) and not applicable (   ).

Figure 4: Performance-oriented categorization for the metrics obtained in the systematic

search performed in this article.
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5.1. Definition of performance and main attributes435

Performance is a multi-faceted concept which, according to the Merriam-

Webster dictionary, and in the context of system implementation, can be de-

fined as “the fulfillment of a claim, promise, or request.” In the organizational

and workplace context, there exist a huge degree of slippage and confusion be-

tween di↵erent terms related to performance, such as productivity, e↵ectiveness,440

e�ciency, and profitability [37]. These concepts are often vaguely defined and

poorly understood in the literature of several disciplines [38]. Moreover, due to

the subtle di↵erences and mutual dependencies between these terms, they are

in many cases used interchangeably [39, 37]. As described in Wagner et al. [40],

this issue has been a topic of discussion for more than four decades. They also445

highlighted the importance of having an established, clearly defined terminology

that can serve as a basis for further discussions. Literature also provides com-

prehensive frameworks that help in the understating of these concepts. Figure

5 shows the main elements used to di↵erentiate performance-related terms in

di↵erent areas. Moreover, there exists a general agreement that performance is450

an umbrella term that includes almost any objective of competition and manu-

facturing excellence [38].

5.2. Definition of measures, metrics and indicators

Another common source of misunderstanding that is widespread in the lit-

erature of di↵erent knowledge areas is the concepts of measures, metrics and455

indicators [41, 42, 43]. ISO/IEC/IEEE 24765 [44] defines a measure as “a

variable to which value is assigned as the result of measurement” and a met-

ric as “a combination of two or more measures or attributes.” However, some

authors provide opposite definitions [43]. Finally, an indicator according to

ISO/IEC/IEEE 24765 is a “measure that provides an estimate or evaluation of460

specified attributes derived from a model with respect to defined information

needs” [44]. ISO/IEC/IEEE 24765 also defines a direct metric as a “metric

that does not depend upon a measure of any other attribute.” Examples of

direct metrics are the duration of a process (elapsed time) and the number of
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Figure 5: Relationship between performance, e�ciency, profitability, e↵ectiveness and pro-

ductivity according [47, 48, 49]

errors or defects. ISO/IEC/IEEE 24765 also defines a indirect metric as a “465

metric that is derived from one or more other metrics.” Finally, [43] provides

an object-oriented approach of consistent terminology between measures (sim-

ple numerical values with little or no context), metrics (collection of measures

with context), and indicators (comparison of metric to baseline). Most recent

review in [45, 46] defines measure as a “quantitative whole number, either in470

monetary (financial) form, dimension form (e.g. square meter) or unit form (e.g.

production output),” metric as a “quantitative standard in fraction form,” and

indicators as “quantitative or qualitative form for measuring things more gen-

erally.” It is possible to see a general agreement between standard definitions in

[44] and recent reviews of [45, 43, 43]. In the next sections, we adopt these ter-475

minologies by considering measures as simple and direct values, and metrics as

composite values composed of one or more measures or other metrics generally

resulting from some mathematical function (often a fraction).
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5.3. Performance measures for Human-Robot Interaction

They are rudimentary, accurate, or simple variables obtained from an ag-480

gregate of facts (e.g., total cost and the number of errors) or direct physical

measurements in either the robots or the humans (e.g., time for completing

some action and joint acceleration). They are used to clarify the current or

final state of the human, robot, process, or interaction. From the results of the

systematic search as well as the performance measurement models reviewed in485

[50] we identified the following groups of metrics in this category:

• Time behavior measures indicates the response and processing times that a

human, robot, or a combination of humans and robots requires to perform

its functions, a sub-task, or a complete task. Examples of these metrics

are human idle time, algorithm processing time, collaboration time, and490

task completion time.

• Process measures are an aggregation of facts generated from the start to

the end of a task or sub-task as well as cost-related, workspace design,

safety, or product quality-related elements. Examples of these metrics are

the number of errors and the number of assembles reached.495

• Physiological measures are values obtained from body measures that help

to understand the current state of the human (e.g., acceleration of human

joints and heart rate)

• Human-Robot physical measures are values obtained from sensors that

indicate the current state of the interaction (e.g., the distance between500

the human and the robot)

5.4. Performance metrics for Human Robot Interaction

We define performance metrics for HRI as a combination of direct measures

using a mathematical expression (usually a division) with other measures or

metrics to express a rate, an average, or an input/output relationship. In this505
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work, we consider e�ciency (internal performance) and e↵ectiveness (external

performance) as the main attributes used to evaluate task performance.

E�ciency metrics. According to ISO 9241, e�ciency is the “relation between

the resources (inputs) used, and the results (outputs) achieved.” In this article,

metrics evaluating e�ciency are defined as input/output relationships. The510

main idea behind e�ciency metrics is to evaluate if HRI systems are “doing

things right.” Therefore, these metrics evaluate the progress toward completing

defined objectives. Consequently, the typical question they try to answer is how

well resources (time, costs, materials) are used.

E↵ectiveness metrics express the ratio between the actual or obtained results515

and the programmed, wanted, or intended results to achieve. The main idea

behind e↵ectiveness metrics is to evaluate if HRI systems are “doing the right

things.” Therefore, these metrics evaluate the accuracy and completeness with

which HRI systems achieve specified goals. Consequently, the typical question

they try to answer is which is the success or failure rate?520

6. Development of a holistic and human-centered model for Human-

Robot Interaction

Year by year, holistic and multidisciplinary paradigms, such as human-

centered design, have gained more importance in di↵erent disciplines. This

contrasts with the traditional performance-oriented vision generally presented in525

the initial stages of many emergent technologies. Research teams with technical

backgrounds predominantly conduct the design and development cycles in these

initial stages. The primary motivation that often guides these researchers is to

build interactive systems able to meet a set of functional requirements as well

as to prove the superiority of the proposed architectures and algorithms against530

previous solutions [51]. However, many mature technologies nowadays accepted

and adopted by the general public have historically switched their design ap-

proaches from performance-oriented to a more holistic point of view [52, 53].

Smartphones and web interfaces are examples of mature technologies that peo-
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ple widely adopt these days. In these technologies, non-functional aspects, such535

as emotional responses, comfort, social value, and aesthetics, play essential roles

not only to reach commercial success but also to be appreciated-by-users [54].

Therefore, the main objective of this section is to present a human-centered

and holistic taxonomy of metrics and quality factors for HRI. The procedure we

followed to build this model is:540

1. Define human-centered quality for HRI and identify the high-level quality

attributes

2. Identify if exists an overlap or disagreement in the HCI and HRI commu-

nity between the elements composing these high-level quality attributes

and summarize the di↵erent points of view.545

3. Define a model that presents and classifies those quality factors obtained

as a result of the systematic review (described in section 4). We presented

this model as a Venn diagram, which shows the limits between human-

centered areas and identified quality attributes.

6.1. Definition of human-centered quality for HRI550

We extended the definition of human-centered quality detailed in the ISO

9241-11:2018 (ergonomics of human-system interaction) [55] to HRI systems.

This international standard provides a set of definitions, requirements, and

recommendations designing human-centered products, systems, and services.

Therefore, in this work we consider that an HRI system presents human-centered555

quality when is able to met requirements of usability, accessibility, user experi-

ence, and avoidance of harm from use. These requirements can be considered

top-level quality concepts.

6.2. Relationships between usability, user experience, ergonomics and hedonomics

Quality factors given in the ISO 9241-11:2018 present a significant overlap560

and di↵erent conceptualizations. The two concepts that present more overlap

are usability and user experience [67]. On the one hand, usability is in some

cases related to “ease-of-use”. However, its concept is more comprehensive.
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Usability models Usability attributes

ISO 9241-11:2018 [55] E↵ectiveness, e�ciency, satisfaction

ISO/IEC 9126-1:2001[56] Understandability, learnability, operability, attractiveness

ISO/IEC 25010 [18] Accessibility, flexibility, reliability, maintainability, compatibility

Nielsen [57] Learnability, e�ciency, memorability, errors, satisfaction

Rı́os et al. [58] Knowability, operability, e�ciency, robustness, safety, satisfaction

Shackel et al. [59] E↵ectiveness, learnability, flexibility, subjectively pleasing

Gupta et al. [60] E�ciency, e↵ectiveness, satisfaction, memorability, security, uni-

versality, productivity

Table 5: Usability attributes in the Human-Computer interaction literature adapted from

[34, 60]

UX models UX attributes

ISO 9241-11:2018 [55] Emotions, beliefs, preferences, perceptions, physical and psycho-

logical responses, behaviors and accomplishments

UX honeycomb [61] Usefulness, usability, desirability (i.e., emotional appreciation),

findability, accessibility, credibility

Zarour et.al [62] Hedonic (emotional, trustworthiness, aesthetics, fun, privacy, sen-

sual), pragmatic (usability, functionality, usefulness)

Lachner et.al [63] Look (aesthetics/design, interface, information value), feel (con-

trol, learnability, pleasure, satisfaction, ease of use), usability (ef-

ficiency, utility, e↵ectiveness, functionality)

Table 6: Relevant user experience (UX) attributes in the Human-Computer Interaction liter-

ature

Source Ergonomics area Domains and attributes

Kadir et.al [64] Physical Working postures, materials handling, repetitive

movements, musculoskeletal disorders, workplace

layout, safety and health

Cognitive Perception, memory, reasoning, motor response,

mental workload, decision-making, skilled perfor-

mance, human reliability, work stress, training

Neumann et.al. [65] Physical Safety, fatigue, posture, gesture, musculoskeletal

disorder

Cognitive Learn, knowledge, training, capabilities, skills,

experiences, education, teaching, talent, compe-

tencies, creativity, confusion, e-learning, forget-

ting, memory, reasoning

Table 7: Cognitive and physical ergonomics attributes and domains found in recent surveys

on ergonomics applied on industrial environments
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Source Domains and attributes

Zarour et.al [62] Emotional, trustworthiness, aesthetics, fun, privacy, sensual

Diefenbach et.al [66] Stimulation, fun, entertainment, a↵ect, emotion, pleasure, en-

joyment, happiness, identification, self-expression, psychological

needs, end in itself, be-goals, beyond the instrumental, beauty,

aesthetics, visual appeal, social value, social interaction, related-

ness, imagination, fantasy, memories, long-term use, trust

Table 8: Hedonomics

According to ISO 9241-11:2018, usability is “the extent to which a system,

product or service can be used by specified users to achieve specified goals with565

e↵ectiveness, e�ciency, and satisfaction in a specified context of use”. In this

definition, two di↵erent elements can be identified: those related to objective

and performance-oriented factors (e↵ectiveness and e�ciency) and those related

to subjective aspects (satisfaction) [67]. Despite this standardized definition,

there is no consensus in the HCI and HRI communities about the definition570

of usability [68]. Therefore, several authors propose di↵erent attributes com-

posing the definition of usability. Examples of review articles summarizing the

di↵erent definitions of usability are [69, 68]. Table 5 shows some of the com-

mon attributes of usability presented in the literature. On the other hand, ISO

9241-11:2018 defines user experience as “the person’s perceptions and responses575

resulting from the use and/or anticipated use of a product, system or service.”

This standard also indicates that “user experience includes all the users’ emo-

tions, beliefs, preferences, perceptions, physical and psychological responses,

behaviors and accomplishments that occur before, during and after use.” As de-

scribed in [62] user experience is considered by some authors as a subset of the580

satisfaction component of usability. In contrast, others can consider usability

a subset of the user experience. Moreover, a third perspective considers that

usability emphasizes objective measures and user experience emphasizes subjec-

tive measures. Table 6 shows the di↵erent quality attributes of user experience

presented in the HCI literature. To reduce the confusion presented between the585

concepts of usability and user experience, [67] proposed a holistic model designed

to be consistent with the ISO standards’ definitions. This model integrates the
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Figure 6: Di↵erent interpretations and relationships of User Experience (UX) and usability

found in the literature. Adapted from [67] and [62]

holistic approach of user experience and the mixed formulation often presented

in usability definitions, which considers both subjective and objective elements.

Moreover, emotion-related elements, such as pleasure, acceptance, trust, and590

aesthetics are considered out of the scope of usability, which is an approach in

many cases accepted by practitioners. We use the approach proposed in [67] as

a starting point for the development of the HRI model presented in this arti-

cle. Figure 6 shows a summary of the main interpretations and relationships

between the concepts of user experience and usability in the HCI literature, as595

well as the main factors used to di↵erentiate them (satisfaction, performance,

a↵ect, subjective measures, and objective measures).

Ergonomics (also denoted as human factors) is also a human-centered disci-

pline which goals and tools in many cases overlap with those presented in usabil-

ity and user experience design. The ISO 6385:2016 [71] defines ergonomics as600

a “scientific discipline concerned with the understanding of interactions among

human and other elements of a system, and the profession that applies theory,

principles, data, and methods to design in order to optimize human well-being

and overall system performance.” However, the most common conception of er-

gonomics refers to how companies design tasks, scenarios, and interfaces able605

to maximize the e�ciency and working condition of their employees’ work [72].
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Figure 7: Hancock’s Hedonomic Pyramid adapted from [70]. This pyramid shows the limits

between hedonomics (in blue) and ergonomics (in gray)

Most works in the literature identify two main areas of ergonomics: physical

and cognitive ergonomics. These areas are explained in section 6.3.2. Rele-

vant factors and domains described in the literature for physical and cognitive

ergonomics are shown in table 7.610

Hedonomics represents a conceptual companion of ergonomics focused on

“the pleasant or enjoyable aspects of human-technology interaction” [70]. As

explained in [72], the moral foundation or main core of ergonomics is focused

into reduce pain, injuries, and su↵ering in the workplace. However, this dis-

cipline is often limited to show the importance of preventing negative events615

that “eventually do not happen” [72]. Conversely, hedonomics focus on more

positive aspects of work interactions by “promoting the occurrence of satisfying

interactions, which can be proved or observed” [72]. Areas related to hedo-

nomics are user experience, kansei engineering [51] and pleasurable design [73].

These satisfaction and a↵ective focused paradigms proposed in hedonomics dis-620

ciplines contrast with the predominant safety and productivity-oriented focus

of traditional research in ergonomics [72]. The Hancock’s Hedonomic Pyramid
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Type Measurable dimension/quality aspect

A↵ect Emotional responses (1)

Beliefs Attitudes/Acceptance (9), Anxiety (3), and Trust (11), Perceived

robot ability (1), Perceived robot intelligence (1), Social Presence

(1), Human-likeness (1)

Cognitive ergonomics Mental workload (5), Concentration/Attention (3), Mental models

and Awareness (6)

Physical ergonomics Physical workload (3), Safety (15), Physical fatigue (1), Physical

comfort (1), Workplace design (1)

Table 9: Most relevant human-centred quality attributes used in Human-Robot Interaction

systems with industrial and collaborative purposes. Inside parentheses is indicated the number

of articles using each quality factor for its analysis.

proposed in [70] (shown in figure 7), which is based on the Maslow’s psycholog-

ical hierarchy of needs, clarify the limits of both hedonomics and ergonomics.

This pyramid starts in the bottom by defining aspects that are able to meet625

collective and functional goals. Each higher level of the pyramid focuses more

and more on individual and non-functional aspects. Moreover, usability factors

are divided in those closer to the definition of hedonomics (mostly subjective)

and those traditionally presented in ergonomics (mostly objective).

6.3. Definition of a human-centered model from the results of the systematic630

review

Taking as inspiration the works, concepts, and models proposed in the HCI

literature, specifically [58, 67, 62], as well as the results of the systematic search

proposed in this article, we propose a holistic quality model adapted for Human-

Robot Interaction. Figure 8 shows the relationships between more relevant635

attributes found in the literature. This models shows existing relationship and

limits between usability, user experience, hedonomics and ergonomics using the

concepts explained in section 6.2.

6.3.1. Hedonomics quality factors

The creation of interactive experiences able to maintain optimal emotional640

levels are important for the reduction of stress levels, avoiding disastrous errors
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and increasing task performance [74]. Moreover, hedonic-related factors such

as happiness, emotional stability, and positive emotions are often considered

as relevant dimensions reflecting the people’s well-being (a concept defined as

a combination of functioning well and feeling good) [75]. Our quality model645

classifies hedonic factors into two groups. On the one hand, the first group

considers those factors predominantly influenced by emotional aspects. In this

group, the top-level concept is a↵ect, which is often used to include emotional-

related terms [76]. According to the results obtained in the systematic review

performed in this article, very few articles have considered a↵ective factors when650

developing HRI systems for industrial scenarios. A relevant exceptions is [77].

However, they only consider the a↵ective response as one of the factors a↵ect-

ing trust. On the other hand, the second group considers those factors where

both emotional and cognitive aspects take relevance. In this group, the top-level

concept is beliefs. In the a↵ective computing literature beliefs are often associ-655

ated with cognitive responses able to trigger emotions (i.e., a↵ective response).

Furthermore, emotions can influence the strength, resistance to modification,

and content of the people beliefs. This influence is denoted as a↵ective biasing

[78, 79]. According to [80], relevant HRI factors associated to beliefs are atti-

tudes, anxiety, acceptance and trust. Unlike purely emotional factors, beliefs are660

taking more attention in the HRI community with industrial focus, being trust

the most common hedonomic aspect evaluated or discussed.

6.3.2. Ergonomic quality factors

As described in section 6.2 ergonomics commonly focus on two main objec-

tives. The first objective is to optimize human mental and physical well-being by665

preventing pain and risk situations when interacting or working with machines.

The second objective is to optimize the system’s performance by improving its

objective usability and functionality. We divide ergonomics factors in three main

classes: performance, physical ergonomics and cognitive ergonomics. Section 5

discussed performance metrics for HRI. Physical ergonomics and cognitive er-670

gonomics are the most used classifications in ergonomics. On the one hand,
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Figure 8: Most representative quality factors analyzed in the HRI literature according to

the results of the systematic review. This diagram is adapted to HRI from the Interaction

Experience model proposed in [67]

physical ergonomics deals with the potential negative e↵ects or consequences

on the human body produced by working situations, such as postures, heavy

work, repetitive movements, or forces [81]. In this context, the main goal is to

build interactive systems and working environments that are compatible with675

the size, strength, and physical capabilities of users, and that at the same time

does not create additional health or injuries risks [82]. On the other hand, fac-

tors in cognitive ergonomics focus on the creation of systems that matches the

perceptual and psychological capabilities of users; therefore, enabling users to

understand the state of the environment and reasoning about it [82]. Unlike680

the factors presented in section 6.3.1 where emotions can present a considerable

influence, this class includes those factors where mostly cognitive and rational

capabilities are required and where cognitive and perceptual elements can be

potentially influenced in a negative way. Another di↵erence done in this article

is that beliefs and a↵ective factors can be measured, changed or influenced be-685

fore, during and after the interaction with robots, while the factors included in
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cognitive ergonomics and physical ergonomics are predominantly measured or

relevant during interaction with robots.

7. Common human-centered factors for Human-Robot Interaction

From the results of the systematic search, we identified those factors where690

the robotics community has put most of the attention. We briefly present those

factors below.

7.1. Safety

Safety is a critical quality aspect in ergonomics. As shown in figure 7, this

aspect is located at the base of the functional requirements of any technological695

system. Results of the systematic review presented in this article indicate that

physical safety is the most common quality aspect evaluated in the context of

industrial and collaborative robotics. Table 10 shows the most relevant arti-

cles resulting of the systematic search that propose or use metrics for safety in

the area of collaborative robotics. Some of these metrics are based on interna-700

tional standards for industrial robotics and HRC. Standards mentioned in these

articles are: ISO 10218-2:2011 (safety requirements for industrial robots), ISO

13482 (personal care robots) [95] ISO/TS 15066:2016 (collaborative robots) [96],

ISO 13855:2010 (positioning of safeguards with respect to the approach speeds

of parts of the human body) [97] , and NSI/RIA R15.06– 2012 (robot systems705

safety requirements). Most of these metrics can assist in the development of

systems that reduce the possibility of presenting dangerous or fatal situations,

such as the collision between a robot and a human co-worker. Others, such as

the number of conflicts between human and robot and mean velocity of the end-

e↵ector, can be used to measure both safety and robot performance [88]. Other710

popular methods used in the industry to evaluate physical ergonomic risks at

assembly lines are summarized in [94] and displayed in Table 11. Unlike most

of the metrics presented in Table 10, which can be specific to HRC, methods

displayed in Table 11 are more general. Therefore, they are applicable in envi-

ronments where workers have some risk of presenting musculoskeletal disorders.715
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Article Context Methods/Metrics

Marvel et.al [27] Safety features for collaborative

robots

Speed and separation monitoring

(SSM) Power and force limiting

(PFL).

Matsas et.al. [83] Standards for Human-Robot Collabo-

ration

Velocity of the end-e↵ector [84],

Maximum dynamic power [84],

Maximum static force [84]

Process safety output Number of collisions between hu-

man and robot, mean velocity of

the end-e↵ector

Gualtier et. al. [85] Evaluation if an activity can provide

physical stress or if it could be dan-

gerous for humans

Safety and Ergonomic evaluation

index (SEEI)

Vemula et.al. [86] Assessment of the severity of a tran-

sient physical contact between a robot

manipulator and a human body re-

gion

Safety design metric based on

power flux density

Zhao et.al. [87] Human-Robot Collaboration safety

metrics

Safety index (safety as function

of the distance between human

and robot)

Kumar et.al [88] Human-Robot Collaboration safety

metrics

Number of conflicts between hu-

man and robot, Average sepa-

ration distance between human

and robot

Saenz et.al [89] Safety when mobile robots work in

close proximity to human operators

Protective separation distance

between the tool and a human

operator

Hippertt et.al [90] Assign levels of safety that allow a

robot to perform a collaborative ac-

tivity

Hazard Rating Number

Oyekana et.al [91] Calculate the e↵ect on the human if a

robot were to hit the human

Head Injury Criteria (HCI)-

based force related danger

Avanzini et.al [92] Assess how dangerous a particu-

lar robot configuration could be for

a human standing in the robot’s

workspace

Danger field [93]

Table 10: Resulting articles proposing, gathering or using metrics for physical safety
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Context/Objective Methods/Metrics

Lifting task National Institute for Occupational Safety and Health lifting

equation (NIOSH-Eq)

Assessment of postures Rapid Upper Limb Assessment (RULA), Rapid Entire Body As-

sessment (REBA)

Risk assessment of upper

extremities

OCcupational Repetitive Action tool (OCRA) and the Job Strain

Index (JSI)

Noisy workplaces Daily Noise Dosage (DND)

General risk assessment

tools

The Ergonomic Assessment Work Sheet (EAWS) and the energy

expenditure method (EnerExp)

Table 11: Most common risk assessment methods according to [94]

As described in [94], the level of physical ergonomic risks will depend on the

frequency, intensity, and duration of physical workload factors (e.g., repetitive

movements and awkward postures) and environmental factors (e.g., temperature

and noise).

7.2. Trust720

Results from the systematic search performed in this article suggest that

trust is the second most common human-centered quality aspect evaluated in

the context of industrial and collaborative robotics. Trust is a broad and mul-

tidimensional concept which is highly-depended of the context [98]. Examples

are trust in social media, interpersonal relationships, organizations and govern-725

ments. In robotics, trust is mostly described from the technological point of

view and under the concept of trust in automation [99]. However, there is not a

consensus on a single definition of trust in the HRI community [100]. Addition-

ally, trust towards robots can be defined from two perspectives: performance-

oriented and human-centered. An example of a performance-oriented definition730

of trust is given by [98, 101], where trust is defined as “the attitude that an agent

will help to achieve an individual’s goals in a situation characterized by uncer-

tainty and vulnerability.” In this perspective trust is identified as an important

factor able to influence the performance under certain tasks and conditions.

The main idea behind this approach is that “if people do not believe in the735

collaborative capabilities of a robot, they will tend to underutilize or not use it
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at all” [101], which consequently can produce a drop in the task performance.

An example of a human-centered definition of trust is described as “the reliance

by one agent that actions prejudicial to the well-being of that agent will not be

undertaken by influential others” [100, 102]. Another human-centered and com-740

prehensive definition of trust is described in “a belief, held by the trustor, that

the trustee will act in a manner that mitigates the trustor’s risk in a situation

in which the trustor has put its outcomes at risk” [103]. We observed that one

of the most relevant trust-related research topics inside the robotics community

is the identification of factors a↵ecting trust towards robots and human-robot745

interaction. While these articles propose a set of di↵erent attributes a↵ecting

trust, many of them considers the bases set by [104], which establishes the three

main attributes of trust as: ability, integrity, and benevolence. Articles dealing

with this topic discovered in the performed literature review are [77, 98]. Char-

alambous et al. [98] and Yagoda et al. [105] additionally present scales enabling750

the evaluation of trust in industrial HRC and HRI respectively. Relevant articles

surveying factors a↵ecting trust in HRI contexts are [100, 106]. They classified

factors a↵ecting the development of trust in HRI in performance-related (e.g.,

proximity, apology for failure and feedback), human-related (e.g. personality,

culture and experience with robots) and task/environment-related (e.g., work-755

load, duration of interaction and physical presence of the robot in task site). In

some of the articles reviewed, trust is also considered as one of the most rele-

vant subjective factor composing the attribute of fluency [107, 108], discussed

in section 8.3. We also observed that trust is mostly evaluated using subjective

methods such as questionnaires, which are often applied after humans have in-760

teracted or worked together with robots. Moreover, this evaluation is generally

unidirectional (i.e., it measures the level of trust that human has towards the

robot but not the other way around). A relevant exception is [109], which pro-

poses a bidirectional computational model that evaluates human’s trust in robot

and robot’s trust in human. Additionally, trust is measured in real-time during765

collaboration. Authors of [109] claim that bilateral trust models can help to

increase the performance of industrial tasks, such as assembly, that those only
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considering one-way trust (from humans to robots).

7.3. Attitudes and acceptance

Robotics is an emergent technology able to produce both positive and nega-770

tive impacts on society and individuals. There exists a consensus that HRC can

only be successful if human workers and society are willing to use and adopt

this novel technology [110]. In this context, ethical and social issues such as

fears towards robots replacing human workers, disinformation and false expec-

tations given by social media and science fiction movies, and even the individual775

resilience in the adoption of uncertain technologies can a↵ect people’s thoughts

and feelings towards using robots. Results from the literature review identify

attitudes and acceptance as popular aspects used to understand the level of

adoption or resistance towards the robots in factories. Additionally, we also

observed that many researchers in the HRI community use these highly coupled780

concepts in an interchanged way. On the one hand, the Cambridge dictionary

defines attitudes as “a feeling or opinion about something or someone, or a way

of behaving that is caused by this.” This concept is also defined in [111] as

“a psychological tendency that is expressed by evaluating a particular entity

with some degree of favour or disfavour.” Similar to trust, the identification of785

factors able to influence the attitudes that certain groups have towards tech-

nological devices is an active research topic. However, according to [112, 113]

there exist an agreement in the psychological community that attitudes can be

described as a summary of semantic dimensions, such as pleasant–unpleasant,

harmful–beneficial, good–bad, and likeable–dislikeable. Results from the sys-790

tematic review indicate that the most popular tool for measuring attitudes in

industrial and collaborative contexts is the Negative Attitudes Towards Robotics

Scale (NARS) [114]. Other methods used in the articles reviewed are the Com-

puter Thoughts Survey, and General Attitudes Towards Computers Scale, which

together with the Computer Anxiety Rating Scale constitute the methods de-795

fined by Rosen and Weil [115] for measuring technofobia. The recent survey

proposed in [80] summarizes common methods and results from articles eval-
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uating attitudes, anxiety, acceptance, and trust in the social robotics context.

This article identifies three distinct components of attitude a↵ect, cognition and

behavior/general. Methods used to measure a↵ective attitudes are the NARS-S1800

(interaction with robots) and NARS-S3 (emotions in interaction with robots)

subscales [114], the Godspeed Questionnaire [116] (particularly in the likabil-

ity dimension) and self-report measured based in semantic di↵erential scales,

such as those proposed in Kansei Engineering [51]. For cognitive attitudes, [80]

reports the use of the NARS-S2 subscale (beliefs about the social influence of805

robots) as well as sub-scales of the Almere Model of robot acceptance [117] and

Unified Theory of Acceptance and Use of Technology [118]. Finally, general

attitudes are identified as a mix of a↵ective and cognitive measures. For this,

[80] reveals the use of self-report and the Implicit Association Test [119] in so-

cial robotics. Additionally, we identified the Multi-dimensional Robot Attitude810

Scale [120] as an recent method focused on measuring attitudes towards robot

in domestic scenarios and the Robot Perception Scale [121], which enables to

measure general attitudes toward robots and attitudes toward human-robot sim-

ilarity and attractiveness. On the other hand, acceptance is generally defined

in terms of the intention to use or the actual use of robots [80]. Methods iden-815

tified for measuring attitudes and acceptance are the Frankenstein Syndrome

Questionnaire [122], the Technology Acceptance Model (TAM) [123], and their

major upgrades TAM 2 [124] and TAM 3 [125]. However, the suitability of

methods for evaluating attitudes in industrial and collaborative scenarios is still

uncertain. An exception is the TAM reloaded [126], which main focus of its820

authors is the development of an acceptance model that enables the assessment

of human-robot cooperation tasks in production systems.

7.4. Mental workload and attention

Workload is one of the most extensively studied factors in the domain of

ergonomics. This quality aspect is strongly related to other human factors such825

as stress, fatigue, motivation, the di�culty of tasks performed, job satisfaction,

and success in meeting requirements [127, 128]. Workload can be defined as
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“the ratio of resources required to achieve tasks to the resources the human

has available to dedicate to the task” [129, 130]. The literature presents two

main classifications of workload. One of the initial classifications of workload,830

proposed in [131], distinguishes between quantitative and qualitative workload.

While quantitative workload a↵ects biomechanical and stress factors, qualitative

workload a↵ects mental overload and overall physical well-being. However, the

most common classification distinguishes between mental and physical workload.

According [132], mental workload or cognitive workload is “a composite brain835

state or set of states that mediate human performance of perceptual, cognitive,

and motor tasks.” Stanton et.al. [133] propose a definition of mental workload

as “the level of attentional resources required to meet both objective and sub-

jective performance criteria, which may be mediated by task demands, external

support, and past experience” [134, 133]. As described in [127], the methods840

and metrics considered under mental workload are from numerous and task-

specific research activities about the limitations and capacities of information

processing systems in humans. These methods are classified in [134] as: task

performance measure, subjective reports, and physiological metrics. Human

performance can create a cause and e↵ect relationship with mental workload.845

An example happens when there is a drop in the e↵ectiveness and e�ciency

of the tasks, which can increase the human perception of workload. In order

to avoid errors and accidents, one of the main objectives in ergonomics is to

identify and reduce sub-optimal levels of mental workload (i.e., when an exces-

sive load or low engagement in the task) [134]. A common activity in cognitive850

ergonomics is the registration of the operator’s capability to perform high tasks

priority at acceptable levels. In this context, peripheral detection tasks (PDT)

emerge as a suitable tool to evaluate cognitive workload from a high-priority

task. The main idea behind PDT is that “visual attention narrows as work-

load increases” [134]. The metric of with-me-ness was introduced in [135] to855

measure “how much the user is with the robot during a task.” An example of

systems able to measure the concentration or sustained attention in the area

of HRC is presented in [136]. Subjective reports are the most popular way to
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measure mental workload. Traditional methods such as NASA Task Load indeX

[137], the Subjective Workload Assessment Technique (SWAT) (Reid and Ny-860

gren 1988) and the simple and fast Rating Scale Mental E↵ort (RSME) (Zijlstra

1993) are known to be complicated and time-consuming as well as to present

retrospective/recall bias (i.e., incorrect recall due memory e↵ects) [134]. Results

from the systematic review performed in this article show that the self-reporting

method, particularly the NASA-TLX [137], is the most common approach used865

to measure mental workload in industrial settings. Finally, physiological met-

rics enable the objective evaluation of workload by collecting real-time data

(e.g., heart, brain, and muscle activity) in many cases collected by wearable

devices attached to the human body. However, these methods often require

the use of intrusive devices, which can reduce the comfort of human subjects870

and workers. Examples of quantitative methods to measure mental workload

based on brain activity are electroencephalography (EEG), event-related poten-

tials (ERPs), positron emission tomography (PET), and functional magnetic

resonance imaging (fMRI) [132]. Other physiological measurements correlated

with an increase in mental workload are Skin Conductance Activity (SCA) and875

breathing rate.

7.5. Physical workload

The overall workload can be decomposed into seven components: cognitive,

gross motor, fine motor, tactile, visual, speech, and auditory [130, 138]. Accord-

ing [130], physical workload can be defined as the “amount of physical demands880

placed on a human when performing a task” and is composed of gross motor,

fine motor, and tactile components. Chihara et al. define physical workload as

“mechanical load acting on the musculoskeletal system of human” [139]. Works

reporting the evaluation of physical workload use the NASA-TLX. Objective

metrics able to measure physical workload have been classified in [130]. Exam-885

ples of these metrics are Variance in Posture, Postural Load, Vector Magnitude,

Heart Rate, Respiration Rate, Galvanic Skin Response, and Skin Temperature.

Other subjective approaches include the Borg Rating of Perceived Exertion
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[140], the Nordic Body Discomfort questionnaire [141] and The McGill Pain

Questionnaire (MPQ) [142].890

7.6. Situation awareness and mental models

Initially identified during World War I, the concept of situation awareness

started to gain technical and academic importance until the late 1980’s in the

aviation industry [143]. During the next years, research in situation aware-

ness constituted a substantive portion in the area of ergonomics and applied895

in the design of advanced information displays and automated systems [144].

In particular, this area gained importance in those applications requiring the

supervision, monitor, or control of automated systems where multiple and si-

multaneous tasks or goals compete for the attention of the operator [145, 143].

Stanton et al. [133] present a colloquial definition of situation awareness as ”the900

understanding and use of information about what’s happening during dynamic

tasks.” However, the most referenced conception of situation awareness is mod-

eled as an information processing framework [146, 147, 143]. This conception is

defined by Endsley [147] as “the perception of the elements of the environment

within a volume of time and space, the comprehension of their meaning, and905

the projection of their status in the near future” [146, 147]. This definition

suggests that situation awareness is mostly composed of three levels: 1) notic-

ing or perception of the elements of the environment (denoted as Level 1 SA);

2) understanding or comprehension of the current situation (denoted as Level

2 SA), and 3) prediction or projection in the near future (denoted as Level 3910

SA). According [143], most of the theoretical approaches of situation awareness

considers mental models (i.e., drawing on knowledge, experience and skills) as

of its main elements. A mental model is defined in [146] as a “dynamic repre-

sentation of an event or scenario that reflects the person’s understanding of the

situation and can promote accurate situation awareness.” According [146] men-915

tal models are “cognitive mechanisms that embody information about system

form and function as well as how components of a particular system interact to

produce various states and events.” They can be used to: direct the comprehen-
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sion of new information, make decisions under uncertainty, direct attention to

relevant information, tell the agent or people how to combine and interpret the920

significance of disparate pieces of information as well as how to create suitable

projections of what will happen in near future [148, 144]. Therefore, mental

models can be used to build and maintain situation awareness, especially in

the levels of comprehension and projection [148]. Therefore, an incomplete or

wrong mental model can result in poor comprehension and projection of the in-925

formation. A particular case of a wrong mental model is mode errors, in which

people mistakenly believe to be in one mode or state, but is in another [148].

Tabrez et al. [149] presented a recent review of mental models in Human-Robot

Teaming. They identify three categories of mental modeling in human-robot

teaming as first-order mental models, second-order mental models, and shared930

mental models, being shared mental models strongly correlated to team per-

formance [149, 150]. Metrics to quantitative evaluate mental convergence and

similarity of shared mental models in Human-Robot Interaction are described

in [151]. In robotics, tools and frameworks enable to increase situation aware-

ness was initially applied for the teleoperation of robots in applications, such935

as search and rescue, agriculture, and surveillance. According [152] situation

awareness can be improved in this type of robotics system through the use of

maps, the fusion of sensory information, the minimization of multiple windows,

and by providing spatial information to the operator. While the concept of situ-

ation awareness is generally considered to be a process presented on the human940

side (comprehension of the robot’s states and the working environment), the

concepts of self-awareness and human-awareness identified in [24, 27] are con-

sidered on the robot-side. According [153], self-aware robots are able to “attend

to their own internal states, thus providing a means of generating introspection

and self-modification capabilities.” Examples of these internal states are emo-945

tions, beliefs, desires, intentions, expectations, mobility and sensors limitations,

task progress, faults, perceptions, and actions [153, 24]. On the other, human-

awareness is defined in [24] as “the degree to which a robot is aware of humans.”

Context Awareness [154] is another related concept used in HCI and robotics
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[155]. Nikolas et.al. [155] recently presented a framework that integrates con-950

text and situation awareness under the less known theory of Smith and Hancock

of situation awareness [156].

8. Emergent approaches and open challenges toward Industry 5.0

8.1. Individualized Human-Robot Interaction

Due to practical reasons, applications enabling interactions between humans955

and robots are generally short and static [157]. In factories, robots are often

used to follow collective goals (such as the promulgation of system progress

and functionality) over the human’s individual goals (i.e., adaptable and per-

sonal perfection) [157]. Individualized machine interaction is defined [158] as

one of the five main categories for Industry 5.0. This factor is essential for960

reaching the interconnection and combination of humans and robots strengths

[1], endorsing interaction quality and engagement across long-term interactions,

increasing intention to use and actual usage, and maintaining trust [157, 159].

Technologies enabling individualized human-machine interaction are identified

in [158] as human action recognition, intention prediction, augmented, virtual965

or mixed reality for training and inclusiveness, exoskeletons, and collaborative

robots. In HCI and HRI, individualized user-adaptive or personalized systems

are able to continuously collect and processes personal and physiological data for

monitoring and safety purposes, adapt to the individuals’ needs, emotions, and

preferences, learn to interact with humans, and maintain long-term interactions970

[159, 160, 157]. However, personalized HRI systems could be not universally

accepted due to possible privacy concerns of users [161, 162]. As described in

section 6.3.1, hedonomics factors mostly focus on individual goals. Many of

these factors are often underestimated in previous works and Industry 4.0 ap-

plications. However, hedonomics factors will require more research attention975

on applications for Industry 5.0. Aside from human-machine cooperation and

operator assistant technologies, human-centered initiatives need also to consider

technologies enabling job satisfaction, work-life balance, as well as up-skilling
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and re-skilling of workers, [1]. We believe that the creation of inclusive HRI

environments that prioritize health, autonomy, dignity, and privacy of people980

with di↵erent mental and physical abilities, such as [163], as well as background

and cultures, will be a relevant research topic for the next years for the Industry

5.0 and Society 5.0.

8.2. Creation of transparent robotics systems

Many Industry 4.0 applications rely on black-box Artificial Intelligence (AI)985

methods to enhance the level of autonomy [164, 15]. However, Industry 5.0 sys-

tems able to interact and cooperate with humans must be able to display trans-

parent behaviors [14, 15]. Transparency in human-robot interaction can be used

as an umbrella term to cover other overlapped concepts, such as predictability,

legibility, and explainability [164]. Transparent AI systems under concepts of990

observability and predictability of system behavior follow the user-centered de-

sign principle of: “keep the user aware of the state of the system” [164]. In this

context, to provide a good level of transparency, the human must be able to

know what the robot is doing and why, what the robot will do next, why and

when there is a failure in the system and possible solutions to solve errors [164].995

A related research topic is the generation of legible robot movements which can

help humans to anticipate the robot intentions [165]. Busch et al. [166] consider

that a behavior can be considered to be legible when “an observer is able to

quickly and correctly infer the intention of the agent generating the behavior.”

This HRI quality, denoted as legibility or readability, is generally applied in the1000

context of robot motions. A formal definition of legibility is presented in [167].

They also highlight the di↵erences between legibility and predictability, which

can be considered contradictory properties of the robot motion. While a legible

motion “enables an observer to quickly and confidently infer the correct goal

G,” a predictable motion “matches what an observer would expect, given the1005

goal G” [167]. Examples of works focused on the creation of legible motions for

handover tasks are presented in [168, 169]. Examples of works using self-reports

and physiological methods to evaluate legibility are presented in [170, 108]. In
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this context, the creation of trajectories universally legible (i.e., with di↵erent

cultural backgrounds) is one of the main open issues in this topic [166]. On the1010

other, eXplainable Artificial Intelligence (XAI) has presented rapid growth and

increase in academic attention in the last years [171, 172]. According [172] XAI

methods can be data-driven (focused on the understanding and overcoming of

the opaqueness of black-box algorithms) or goal-driven (agents and robots capa-

ble of explaining their behavior to users). Explainable Robotics is a goal-driven1015

approach in the context of HRI [171] that focuses on developing cognitive mod-

els and algorithms that enable the generation of explanations, work in di↵erent

levels of autonomy, and improve trust and situational awareness. Some of the

challenges of goal-driven XAI for HRI are: the creation of methods enabling

explanations using past experiences [171] and the creation of metric able to1020

evaluate how e�cient and e↵ective explanations given by the robot are and how

humans react to these explanations [172].

8.3. Evaluating fluency

Rather than be considered a metric, fluency is described in [107] as a quality

of interaction presented when a team (e.g., a human and a robot) collaborate1025

on a shared activity. Guy Ho↵man, who first introduced the term of fluency

in [173], considers that a team is fluent when they reach “a high level of coor-

dination, resulting in a well-synchronized meshing of actions or joint activities,

which timing is precise and e�cient” [107]. Moreover, they must to dynamically

adapt their plans and actions when needed. However, research in human-robot1030

collaboration fluency is still in their initial stages. Moreover, many frameworks

proposing metrics of fluency are task-specific, making other of the metrics more

suitable for di↵erent scenarios [107]. A recent review of metrics used by the

robotics community to evaluate fluency is presented by Ho↵man [107]. Ho↵-

man classifies metrics for fluency as subjective (grasping the human perception1035

of fluency) and objective (quantitatively estimating the degree of fluency). Hu

also concludes that “fluency in human-robot collaboration is not a well-defined

construct and is inherently somewhat vague and ephemeral” [107]. Therefore,
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we consider that the factors a↵ecting or composing fluency as well as the design

of metric able to assess fluency for di↵erent types of collaborative settings will1040

still be a topic of discussion in the robotics community for the next years.

8.4. Development of adaptive workload systems

As described in section 7.4, maintaining optimal workload levels in humans

(i.e., avoid situations of excessive load or low engagement) is relevant for reduc-

ing accidents and tasks errors as well as improving the general task performance.1045

For this, a robotic system must be able to accurately estimate in real-time the

level workload in humans via a workload assessment algorithm [130, 174]. In-

puts of a workload assessment algorithm are generally physiological measures,

such as heart rate, neurophysiological signals, and skin temperature. Results of

the workload assessment algorithm can be used to change interaction mediums,1050

the level of autonomy and reallocate roles, tasks, and responsibilities between

the human and the robot [174]. Systems capable of those actions can be denoted

as adaptive workload or adaptive teaming systems [130]. A recent example of a

human-robot adaptive teaming system where the team is required to follow a set

of steps that simulate a response to a disaster event is presented in [175]. The1055

use of these algorithms in other human-robot teaming paradigms and scenarios

is still an open challenge [175].

8.5. Benchmarks

In recent years, international robotics competitions have become a powerful

tool to evaluate the performance of robotics systems. While fostering innovation1060

and pushing the state of the art, competitions also constitute a particular form

of reproducibility. Besides the evident applicability to the competing teams,

the publicly available information about the tasks, rules, results, videos, and

sometimes even code enable the evaluation of non-competing systems.

The competition framework makes heterogeneous systems perform the same1065

tasks under a commonly shared set of rules and, typically, in near-real-world

conditions. Once the common ground is set, the scoring system becomes key
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to evaluate the competitors’ performance. Since the competition scores tend to

hide underlying characteristics of the systems that lead to a given performance,

it is also necessary to use existing or propose new sets of metrics that unveil1070

the hidden features [176]. The competitions facilitate the analyses by enabling

the comparison of the competitors’ systems, linking the relevant metrics to the

score, and elucidating what features influenced the score and in which way.

Most commonly, the score is an objective evaluation of the performance

based on the task completion (e.g., accuracy of image classification [177], ob-1075

stacles traversed [178, 179], items correctly placed [180]). Few competitions,

such as the Future Convenience Store Challenge [181], also evaluate the safety

in HRI. Such safety score is awarded if all the following subtasks are completed:

the robot stops upon a customer incursion in its workspace, announces its in-

tentions to withdraw from the shelf targeted by the customer, withdraws, and,1080

finally, comes back and resumes the task. As highly simplified to fit in the for-

mat of the competition as it may be, this score signals for a shift toward a more

human-centered objective evaluation.

9. Conclusions

In order to move toward a more human-centered society and industry, HRI1085

researchers require to broaden their focus from mere task-fulfillment to more

holistic approaches enabling robotics systems to meet collective and individ-

ual goals. In this article, we identified measures, metrics, and quality factors

adopted or applied in the HRI literature using a systematic approach; there-

fore answering research question RQ1. We proposed two models that classify1090

performance-related and human-centered aspects of robotics systems. While

these models are mainly constructed under the needs and concepts in indus-

trial and collaborative robotics, they can also be applicable to other robotics

disciplines. We also present those human-centered quality factors that have re-

ceived more attention in the robotics literature; therefore answering research1095

question RQ2. These factors are attitude, acceptance, trust, mental and physi-
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cal workload, awareness, mental models, and safety. Finally, we also identified

five emergent research areas, which can be relevant in the next years to build

Industry 5.0 applications; therefore answering research question RQ3. These

areas are individualized HRI, transparent robotic systems, fluency, protocols1100

and benchmarks, and adaptive workload systems. Additionally, we summarize

theoretical frameworks presented in the literature to help researchers and practi-

tioners understand and di↵erentiate between complex and often confusing terms

in the area.

This article focused on the performance and human-centered aspects pre-1105

sented in Industry 4.0 and Industry/Society 5.0. We proposed a taxonomy of

performance metrics and measures based on current trends in robotics and pre-

vious works and a holistic model for HRI based on recent frameworks in HCI.

However, more e↵orts must be performed to identify or propose measures and

metrics able to assess hedonomics (e.g., fun, pleasure, and emotional reactions)1110

and sustainability (e.g., carbon footprint, energy consumption, waste reduction).

Therefore, future work will expand our holistic model in these directions.
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[161] T. Schürmann, P. Beckerle, Personalizing human-agent interaction

through cognitive models, Frontiers in Psychology 11. doi:https://doi.

org/10.3389/fpsyg.2020.561510.1670

[162] Y.-C. Ku, P.-Y. Li, Y.-L. Lee, Are you worried about personalized ser-

vice? an empirical study of the personalization-privacy paradox, in: In-

ternational Conference on HCI in Business, Government, and Organi-

zations, Springer, 2018, pp. 351–360. doi:https://doi.org/10.1007/

978-3-319-91716-0_27.1675

[163] S. Drolshagen, M. Pfingsthorn, P. Gliesche, A. Hein, Acceptance of

industrial collaborative robots by people with disabilities in sheltered

workshops, Frontiers in Robotics and AI 7 (2021) 173. doi:https:

//doi.org/10.3389/frobt.2020.541741.

[164] V. Alonso, P. De La Puente, System transparency in shared autonomy: A1680

mini review, Frontiers in Neurorobotics 12 (2018) 83. doi:https://doi.

org/10.3389/fnbot.2018.00083.

[165] S. El Zaatari, M. Marei, W. Li, Z. Usman, Cobot programming for collab-

orative industrial tasks: An overview, Robotics and Autonomous Systems

116 (2019) 162–180. doi:https://doi.org/10.1016/j.robot.2019.03.1685

003.

[166] B. Busch, J. Grizou, M. Lopes, F. Stulp, Learning leg-

ible motion from human–robot interactions, International

Journal of Social Robotics 9 (5) (2017) 765–779. doi:

Learninglegiblemotionfromhuman--robotinteractions.1690

[167] A. D. Dragan, K. C. Lee, S. S. Srinivasa, Legibility and predictability of

robot motion, in: ACM/IEEE International Conference on Human-Robot

69



Interaction, IEEE, 2013, pp. 301–308. doi:https://doi.org/10.1109/

HRI.2013.6483603.

[168] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, R. Chatila, Toward1695

human-aware robot task planning, in: AAAI spring symposium: to boldly

go where no human-robot team has gone before, 2006, pp. 39–46.
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