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ABSTRACT

While most of the existing works on grasp pose detection have assumed a complete
3D object model, this paper proposes a grasp pose detection method for unknown
deformable objects, based on visual information. The proposed method is comprised
two parts; (1) pix2sti↵ness estimation, which generates a sti↵ness map that indicates
the object’s sti↵ness for each pixel in an image using generative adversarial networks
(GAN), and (2) grasp pose detection, which adapts a sti↵ness map to maximally
reduce the object’s deformation and avoid any possible damage. We demonstrate
the validity of the proposed method and evaluate the estimation accuracy via sim-
ulations, and in a real environment. We also verify that the proposed approach can
plan how to grasp an object using few 3D models of objects.
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1. Introduction

Recently, robots are expected to be able to work in household environments, where
there are several objects with di↵erent shapes, materials, mass, and other properties.
In particular, robots have to grasp several types of deformable objects such as paper
boxes including snacks. Although these objects are easy to grasp for a human, they are
very di�cult for robots that need to search for a grasp pose and control each finger’s
force. In most of the robotic grasping research, the main focus has been placed on rigid
objects where the problem can be simplified by assuming a point contact model [1].
These methods exhibit optimal performance for several types of shapes, sizes, and other
complexities. However, it remains di�cult to successfully grasp deformable objects,
because these rigid-body-based approaches do not consider the object’s deformation.

Recent studies have proposed grasping methods for deformable objects, such as
analysing grasp quality, considering the surface deformation by a contact wrench [2,3],
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and e↵ectively controlling a grasp wrench by sensing the contact wrench [4]. Also,
some simulation-based methods that compute deformation using physics engines and
then apply the grasp in the real-world [5–7] have been proposed. In these cases, they
assumed that the grasping force is controllable by an electric unit, and can grasp
various deformable objects using some force and/or tactile sensor. However, in most
cases of industrial applications, a constant force is used to grasp objects (e.g. pneu-
matic gripper). Also, sometimes is impossible to force control the grasp of slippery
objects even if the slip is detected. Therefore, there is a need to consider sti↵ness to
avoid damages in the object without force control, which can be done by considering
pre-grasping motion before any contact happens. In addition, many objects have an
inhomogeneous sti↵ness like daily items, or are unknown, which makes it di�cult, even
though it might be possible, to apply force control. We propose a grasp pose detec-
tion method for unknown deformable objects using an image as input. This method
comprises two parts; (1) sti↵ness estimation, which generates a “sti↵ness map” that
indicates the object’s sti↵ness for each pixel in an image using generative adversarial
networks (GAN) [8] as an image translation method, and (2) grasp pose detection,
which generates a grasp pose, thereby avoiding damage to the object by the robot’s
gripper, using the sti↵ness map and executing the grasping motion. The overview of
the proposed method is shown in Figure 1. Our contributions are as follows:

(1) Our proposed pix2sti↵ness method can convert the image of objects to a map of
the sti↵ness score for each pixel by adapting the pix2pix [9]. The image transla-
tion can be performed by training semi-automatically generated images using a
physics simulator.

(2) By combining the obtained sti↵ness map with the grasp pose detection method,
we can detect a grasp pose that can prevent damages to unknown (same category
of a bottle or a box, but has di↵erent shape and size) deformable objects with
fewer 3D object models used adopted in training the GAN.

This paper is organized as follows. First, we review related works in section 2.
Next, we comprehensively present an overview of the proposed method (pix2sti↵ness
and grasp pose detection) in section 3. In section 4, we evaluate these method in
simulation. In section 5, we describe the experimental setup and compare the real-
world results with the simulation results obtained in section 4. Finally, we conclude
this study in section 6.

2. Related Works

There are several strategies available for planning how to grasp an object, which adopt
di↵erent kinds of input data such as full 3D mesh model, RGB-D image, and 3D point
cloud data. Using these data as input, almost all of the existing methods generate
optimized grasp poses with di↵erent types of grasp quality measures to achieve suc-
cessful grasps with high accuracy. In this section, we introduce some of the previously
proposed methods for grasp quality evaluation and planning of rigid and non-rigid
objects. We also present a few methods that estimate physical-information from some
images, such as sti↵ness and depth.
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Figure 1. Overview of the proposed grasp pose detection method via sti↵ness estimation: we adopt an image

as the input, and utilize it for image translation by pix2sti↵ness. After image translation, a sti↵ness map that

indicates the object’s sti↵ness score for each pixel is generated. Finally, grasp pose detection is executed using

the map for the case of a 2-finger gripper (the red lines represent the grasp candidate).

2.1. Physics-based grasp quality evaluation

Grasp quality is often defined by considering some properties for rigid objects, such as
disturbance resistance, stability, etc. [4]. These metrics often adopt grasping force and
torque in the analysis of grasp candidates such as grasp wrench space (GWS) [10], and
the expanded method for task completion such as task wrench space (TWS) [10]. For
non-rigid objects, it is di�cult to adopt these measures because they must consider the
deformation generated by the grasping wrench. In recent works, a few methods have
proposed the evaluation of grasp quality by analyzing the object’s deformation [11,12].
In addition, the grasp quality evaluation is not only successful for grasping, but also
for deformability and for preventing damage. Xu et al. [3] proposed quality metrics,
considering task completion of deformable objects, including liquids. Using an elastic
3D model, the grasp quality is defined as the minimal grasping wrench, which reduces
resistance according to Hooke’s law. Also, there are some metrics considering contact
dynamics [5] based on Finite Element Method (FEM) that can simulate grasping in
a more real way than static analytical methods. However, these methods are di�cult
to apply to unknown objects (re-calculation is needed), and to objects with material
properties like nonuniform sti↵ness (FEM assumes homogeneity).

2.2. Image-based grasp pose detection

Grasp planning often needs to recognize the object’s location and/or grasping pose, us-
ing RGB and/or depth images, 3D point cloud, etc., as input. In recent research, there
are several methods of synthesized grasp pose detection [13]. For example, robotics
competitions such as the Amazon Picking Challenge [14] have encouraged the research
community [15,16]. The fast graspability evaluation (FGE) [17] is an e↵ective grasp
pose detection method. The FGE can detect 4-DOF grasping points for unknown ob-
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jects from a single depth image, without requiring object models. In addition, this
method can also be applied to entangle objects like mechanical parts by combining
a simulation environment and convolutional neural network (CNN) [18]. In contrast,
methods based on CNN models use several object models [16], such as simulation-
based learning for bin-picking, which can adapt well to real-world environments [19].
These methods can execute grasping with a high success rate, using di↵erent types of
grippers (two-finger hand, suction and vacuum tools) for several types of shapes and
sizes of objects. An FGE-based object picking system was developed for an actual in-
dustrial application [20]. However, for deformable objects, because grasp planning does
not consider preventing the object’s deformation, the grasped object may be damaged
by the gripping force. For preventing the damages and failure to grasp, force-sensitive
approaches were proposed using force, tactile, and an image to detect contact states
[21]. In this paper, we focus on the pre-grasping motion that can consider the preven-
tion of the damages before contact happens. There are also some methods to grasp
or manipulate objects by estimating the deformation from images [6,7,22], however,
these methods do not consider inhomogeneity sti↵ness (mentioned in previous section).
Hence, additional estimation is required for deformable objects.

2.3. Estimation of physical properties from images

In this study, we propose a simple estimation of the object’s sti↵ness based on images.
Previous studies proposed sti↵ness estimation for specific types of objects, such as
fruits. In this case, softness is classified via regression and mathematical models, based
on optics principles, using high-frequency images from near-infrared, hyper spectrum
cameras as input [23]. Methods for non specific objects measure the displacement on
the object’s surface, generated when an ultrasonic wave is irradiated [24]. However,
these methods can solely be used for specific hardware settings, and are not easy to
apply in robotic manipulation systems (e.g. Pick-and-Place).

In addition, methods that estimate various properties from RGB images exist, such
as depth estimation [25]. This method adopts an RGB image as input to generate a
depth image using a simple deep learning model, as well as deep generative models,
such as GAN [8]. GAN comprises a generator G, which generates an image from
random multi-dimensional noise, and a discriminator D, which discriminates whether
the image is real, and mutually trains two networks. GAN can be applied for image
translation tasks [9,26,27], style transfer, and color painting. Pix2pix [9] is a type of
GAN, which uses before and after pair of images. This method adopts random noise
attached to the image before translation as the input of G to generate the image after
translation, and the same image attached as the input of D discriminates whether the
pair of images is real; this is called conditional GAN (cGAN). There are also various
methods of image translation via GAN’s architecture, such as pix2pixHD [26], which
generates a high resolution image, CycleGAN [27], which generates an image without
using a pair of translation images. Thus, deep learning models have great potential to
estimate some types of physical properties using image translation.

3. Proposed Method

In this section, we introduce the proposed methods for sti↵ness estimation and grasp
pose detection. To estimate the object’s sti↵ness, a sti↵ness map is constructed, which
indicates a score of the sti↵ness for each pixel in an image using image translation
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with GAN. Using this map, a grasp point is detected for the object to be grasped.

3.1. Sti↵ness map generation (pix2sti↵ness)

In this study, we employ pix2pix [9] network architecture to generate a sti↵ness map.
We solely adopt one image as input; however, the representation of an object’s sti↵ness
depends not only on its texture, but also on its shape, material, and other physical
properties. Therefore, other information is also required as input. If we consider them
as conditions when using cGAN, then there is no need to train a new network, as we
would simply need to adjust the inputs. For executing pix2sti↵ness, we employ the
pix2pix architecture because the pair of images required for translation (for the tasks
considered in this work) can be generated via simulations.

3.1.1. Data Collection

To train the pix2pix network, we need pairs of before and after translation images. To
prepare the sti↵ness map, the annotation of a sti↵ness score for each pixel is required,
and the cost of doing it manually is high. In addition, because sti↵ness can change in
some parts of the object, it is necessary to prepare sti↵ness maps for various poses of
each object, which further increases the cost of doing it manually. To address these
problems, we propose a method that semi-automatically generates synthetic data via
simulations. We adopt the 3D object model with its texture attached, as well as the
Blender physics engine [28]; accordingly, data is prepared as follows:

I. Coloured sti↵ness map:
For each 3D model, we decide to divide a green color gradation into 10 tones,
as a guideline for understanding the e↵ect of damage triggered by grasping, and
for representing the sti↵ness score of each object’s surface. Accordingly, this ap-
proach generates a 3D sti↵ness map as a texture attached to the object’s surface
(Figure 2a). The sti↵ness scores are based on manual measurements by a hardness
meter.

II. Execute simulation:
After preparing a white bin (Figure 2b), a simulation that involves dropping
objects with random positions and postures from above the bin is computed by
Blender.

III. Capture images:
We took images from the top of the bin when using the original texture of the
object (Figure 2c) and also when using the sti↵ness map texture (Figure 2d).
Accordingly, we obtained a pair of images. In the sti↵ness map, because the
element value of green indicates the sti↵ness score for each position, we convert
the map from 3-channel to 1-channel (green). And we use this map for training.

We semi-automatically generated the training data by repeating the above steps.
Because we generated a clutter scene, the synthetic data exhibited various scenes with
randomized object poses. The green tone solely represents the sti↵ness score of the
created sti↵ness map.
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(a) Coloured sti↵ness map and map image of 3D

object model

(b) Initial state and background image

(c) Dropped state and original image (d) Dropped state and sti↵ness map image (same

state as Figure 2c)

Figure 2. Data collection using a physics simulator

3.1.2. GAN Training

We employ the pix2pix architecture for pix2sti↵ness translation. The objective adver-
sarial loss is defined by pix2pix [9]:

LGAN = Es[log(D(x, s))] + Ex[log(1�D(x,G(x)))] , (1)

where G is trained to minimize this objective and D is trained vice versa. x and s

indicate the input (RGB or Depth) and sti↵ness map images, respectively. In addition,
the loss function is also based on the L1 distance to obtain a generated image G(x)
closer to the ground truth s:

LL1 = Ex,s[||s�G(x)||1] , (2)

Our problem is

G
⇤ = argmin

G
max
D

LGAN + �LL1 . (3)

The image input and sti↵ness map output have a size of 256 ⇥ 256, the generator
has a U-Nets structure [29], which has a seven-layer encoder and a seven-layer decoder
with skip-connection and dropout for all layers. The discriminator value is calculated
using PatchGAN, which judges True/False for each small region of an image (Figure 3).
To train the network, we can use an arbitrary number of pair of image-sti↵ness map
images (described in the previous section).
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Figure 3. Image translation network architecture of pix2sti↵ness referenced by pix2pix [9]

3.2. Grasp pose detection using sti↵ness map

In this section, we describe the grasp pose detection method using the sti↵ness map
generated by pix2sti↵ness. This sti↵ness map can be easily applied to a method that
indicates a grasp score for each pixel in an image. In this study, we propose a 4-DOF
grasp pose detection using a sti↵ness map and a depth image constrained to a grasping
pose vertical to a plane located in the target objects. The proposed method adopts
the sti↵ness score as the grasp quality score for each grasp candidate in an image.

3.2.1. Overview of the FGE [17]

The FGE is a method that detects a 4-DOF grasping pose using a single depth image.
Using these depth and template images, FGE calculates contact and collision regions
of the hand and a target object, then it computes a non-collision region that represents
grasp pose candidates. Subsequently, a graspability map that indicates the points that
are closer to the object’s center of mass is generated by convoluting a Gaussian filter
with the non-collision region. The optimal grasping pose is detected as the position
with the highest graspability value. The contact Tt and collision Tc templates are
predefined, while the contact It and collision Ic images are obtained from a single
depth image.

Then, the contact region At can be calculated by convoluting Tt with It:

At = Tt ⌦ It , (4)

⌦ denotes the convolution. The collision region Ac can be calculated by convoluting
Tc with Ic:

Ac = Tc ⌦ Ic . (5)

To compute the non-collision region and the graspability score of each pixel, the gras-
pability map is calculated as the region where the gripper does not interfere with the
surrounding area near the center of gravity of the object region (each image can be
seen in Figure 4).

Finally, the graspability map is calculated for each angle of the hand model, and
the optimal grasp pose is the point with the highest graspability score.
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Figure 4. Processing pipeline of the grasp pose detection method

3.2.2. Grasp pose detection using sti↵ness map

FGE can select the grasp pose nearest to the position of the object’s center of mass;
however, for deformable objects, it may cause a large deformation that triggers per-
manent damages. By using a sti↵ness map, we can detect a grasp pose that addresses
these problems.

At first, a sti↵ness map Spre that indicates G(x) for each pixel is generated by
pix2sti↵ness, normalization and some pre-processing are used. In Spre, a larger value
denotes that it is more di�cult to deform. When a grasp pose with a high score is
detected, this implies that it is possible to grasp and prevent damage simultaneously.
By using this sti↵ness map, we proposed a modified FGE that fits the objectives of
this study.

Secondly, the sti↵ness contact image Ist is calculated by multiplying the generated
sti↵ness map Spre and the contact image It:

Ist = Spre � It , (6)

� denotes the Hadamard product. Then, it is convoluted with the contact template
(It is replaced with Ist). Subsequently, the sti↵ness contact region Ast is generated;

Ast = Tt ⌦ Ist , (7)

Ast represents the average sti↵ness score of each pixel in the rectangular region
surrounded by the 2-finger gripper (in the contact template Tt). Via this convolution,
this sti↵ness score di↵ers from the original one, and the score of the locations near the
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object’s silhouette is slightly lower than those closer to its center. Additionally, the
contact region At and the collision region Ac are also generated in the same way as
FGE.

The grasp candidates which are collision free, are obtained using a logical AND
operation between At and Ac, thus, the non-collision sti↵ness region Gst (similar to
the graspability map) is generated as:

Gst = Ast � (At \Ac) , (8)

where Gst(h,w) denotes the element value of the position (h,w) in Gst. The objective
function is defined as:

f(h,w, ✓) =

⇢
Gst(h,w) if Ac(h,w) = 0
0 otherwise

, (9)

where ✓ denotes the rotation angle of the detected grasp candidate, and Ac(h,w)
denotes the element value of the position (h,w) in Ac. The calculated coordinate index
is expressed as:

[H,W,⇥] = arg max
h,w,✓

f(h,w, ✓) . (10)

Here, we only utilize a two-finger gripper’s hand template; hence, we can apply Eq.
(6) as the objective function (described in Figure 4).

4. Simulation Results

In this section, we evaluate the accuracy of pix2sti↵ness estimation and the e↵ective-
ness of our grasp pose detection method in simulation scenes. For training, we prepared
fifteen models of 3D objects in Figure 5a and sti↵ness maps annotated as explained in
section 3.1. For validation, seven unknown (we define some categories such as bottle
and box, then we target objects in the same category but with di↵erent shapes) models
(Figure 5b) are prepared.

(a) Training (b) Validation

Figure 5. Dataset of 3D object models used in simulation.
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4.1. Image quality evaluation

Using the training data presented above, we evaluate the results obtained with dif-
ferent input data types (RGB and Depth). The quantitative evaluation metrics of
the adopted pix2sti↵ness estimation are: 1) root mean square error (RMSE) and 2)
structural similarity index (SSIM) [30] between the ground truth sti↵ness map S
and the predicted map Ŝ using pix2sti↵ness. Especially, SSIM considers changes in
brightness, contrast and the entire structure. These metrics are usually used for depth
estimation [31]. RMSE is calculated as:

RMSE(S, Ŝ) =

vuut 1

M

MX

i=1

(si � ŝi)2 , (11)

where M denotes the number of S pixels (same as Ŝ). si and ŝi denote each element
i-th value of S and Ŝ, respectively. The closer RMSE is to zero, the lower the pixel-
wise error is. SSIM is a metric based on appearance, which is computed for each of
the evenly divided small areas. This metric can analyze spatial similarity. We adopt
the mean of SSIM (MSSIM) to evaluate the entire image quality:

MSSIM(S, Ŝ) =
1

N

NX

j=1

SSIM(Sj , Ŝj) . (12)

SSIM(Sj , Ŝj) is calculated between Sj and Ŝj (N is the number of areas, and we use
N = 100) for each region j. The closer MSSIM is to one, the better the similarity
of the entire image. For evaluation, the predicted sti↵ness map Ŝ is preprocessed map
Spre. The obtained results are summarized in Table 1. It can be observed that higher
accuracy is obtained with depth as input.

Table 1. Estimation results for di↵erent training dataset types

Dataset type RMSE MSSIM

RGB 47.68 0.7250
Depth 32.91 0.8552

4.2. E↵ectiveness of grasp pose detection

Furthermore, we also evaluate the influence of pix2sti↵ness on the grasp pose detection
by calculating the mean of sti↵ness score in the rectangular space surrounded by a
two finger gripper (grasp region) when using the ground truth sti↵ness map s. In
this evaluation, we adopt the segmentation image from simulation as the contact and
collision images, assuming a picking scene with an object placed on the table. After
cropping the grasp region from Ist, The mean of sti↵ness score (the higher the better)
is calculated as:

R =
LX

k=1

⇢
1 if sk > 0
0 otherwise

, (13)
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Mean of stiffness =
1

R

LX

k=1

sk . (14)

where L denotes the number of pixels in the grasp region, and R is calculated as the
size of the object’s region. The proposed grasp pose detection method described in
section 3.2.2 is adopted in this evaluation, to demonstrate the validity of the proposed
method for grasping deformable objects while preventing damage. Using the model of
pix2sti↵ness with the depth image as input, Figure 6 presents examples of detected
grasp poses in simulations, where the red line represents the detected pose for a two-
finger gripper (the blue one is detected by FGE). Table 2 presents the evaluation
of seven images for each single object when using the proposed method and FGE.
The result of each object and the mean of sti↵ness are relatively higher than FGE’s
result. In the result of “Bottle 3”, the score of FGE is close to the proposed method.
The reason is that the lowest sti↵ness of this object is 0.7 which has overall a high
sti↵ness. In the result in Figure 6, the grasp poses were detected far from the center of
gravity, therefore it has some possibility of failure to grasp. Because we only verified
the possibility to prevent damages by considering grasping to the hard part, more
evaluation that the grasp pose can be executed successfully in the real-world is needed.

Stiffness map(generated)

Stiffness map(ground truth)

Detected grasp pose

FGEProposed

Low High

Low High

Bottle1 Box1Bottle2 Box2 Box3Bottle3 Bottle4

Figure 6. Detected grasp pose using the proposed method for seven objects in simulation: in the top row, the

red line represents the detected pose for a two-finger gripper. In the middle row, the images represented the

sti↵ness maps generated by pix2sti↵ness. In the bottom row, the images represent the ground truth sti↵ness

maps generated via simulations.

Table 2. Mean of sti↵ness (Mean of stiffness) for single object in simulations. Each object’s name is as

described in Figure 6

Name
Mean of stiffness

FGE [17] Proposed method

Bottle 1 0.6141 0.7149
Bottle 2 0.6293 0.6896
Bottle 3 0.7710 0.8138
Bottle 4 0.6043 0.7977
Box 1 0.5446 0.7207
Box 2 0.5897 0.7129
Box 3 0.6011 0.7125

Mean 0.6220 0.7374
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5. Real-World Experiments

In this section, we evaluate the predicted sti↵ness map and detected grasp pose using
the map for real images (adopt depth image as input, same as in section 4.2). Because
real depth images have some noise, missing values, and errors, the estimation networks
are trained with only simulation images, and it is inadequate to adopt raw images as
the input for pix2sti↵ness. To address this problem, raw images are preprocessed via
fast digital inpainting [32] and contrast emphasis. By using these simple pre-processing
methods, the sti↵ness map can be generated more clearly. The target objects in grasp-
ing experiments are presented in Figure 7. The hardware used in the experiments are
a UR5, a Robotiq 2-finger gripper (140mm stroke), and a Realsense SR305 attached
to the gripper.

Figure 7. Target objects in real experiments that are not included in training data

5.1. Grasp experiments for single object scene

In this section, we evaluate the e↵ectiveness of the proposed method on real-world im-
ages via grasping experiments. The experimental scene is assumed to be a single object
placed on a table (same as in simulation). In addition, we manually set the height of
the gripper from the table in the proposed 4-DoF grasping pose detection, where the
silhouette of the object’s region can be almost obtained in the contact/collision image.

Figure 8 presents the grasp pose detection results, generated sti↵ness map, and
grasping behavior for each object. It can be observed that the proposed method can
grasp the hard part of each of the objects. However, for “Object 1” and “Object 6”,
the poses of these objects changed during the lifting motion. This result indicates that
the proposed method can fail to stably grasp the object, as the grasp pose for most of
the objects is detected far from their center of gravity. However, because we adopt the
strategy of grasping the hard part of the object, it can be considered to be successful
because few deformations are generated by a posture change of the object.

As a quantitative evaluation, we analyze the deformation the object sustains by
grasping. To evaluate the mean of sti↵ness in the simulation results, we adopt the
sti↵ness map of the ground truth; however, it is di�cult to prepare the same map for
real-world experiments. Therefore, we use the grasping width after performing grasping
for the evaluation. First, we manually measure the grasping width at the moment of
contact with the object (called lc), then, we measure the grasping width after grasping
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with a certain grasping force (called lg). The grasping force can be determined by using
Robotiq’s gripper function (10-125 [N]) provided by URCaps [33]. In this experiment,
we set the constant grasping force to 62.5 [N] assuming the case of no-force control,
this value is the smallest force that can grasp the heaviest object (Object 1 in Figure 8)
in our experiments. After measuring the two grasping widths (lc and lg), we define the
deformation rate using the following equation.

Deformation rate =
lc � lg

lc
⇤ 100 [%] . (15)

Table 3 presents the deformation rate by grasping in Figure 8 for each object. For
most of the results, the deformation rate is lower than FGE, which indicates that the
proposed method can prevent the deformation of the object. However, in the result for
“Object 2”, the deformation rate is higher than FGE. The reason is that the grasping
force is applied to a narrower surface than FGE’s result because the finger surface
was slightly inclined to the object’s surface. By addressing this problem, it is expected
that the object’s deformation can be prevented.

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7 Object 8

Grasp result

Stiffness map(generated)

Detected grasp pose

FGEProposed

Low High

Figure 8. Detected grasp pose using the proposed method for eight objects in real-world: in the top row

images, the red line represents the detected pose for a two-finger gripper. In the middle row, the sti↵ness maps

generated by pix2sti↵ness are presented. In the bottom row, results obtained for grasping and lifting a single

object placed on a table are presented.

Table 3. Deformation rate results for single objects in real-world

Name
Deformation rate

FGE [17] Proposed method

Object 1 25.13 12.44
Object 2 7.913 9.428
Object 3 14.25 9.757
Object 4 13.74 7.610
Object 5 13.69 8.885
Object 6 18.18 10.91
Object 7 18.33 14.47
Object 8 66.14 21.64

Mean 22.17 11.89
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Object 5 Object 2 Object 4

Figure 9. Some examples of successful grasping results in clutter scene. There are three successful cases

of grasping each target object while preventing deformation and avoiding collision with other objects during

grasping.

5.2. Grasp experiments for clutter scene

Similarly to section 5.1, we evaluate the deformation rate and success rate in a cluttered
scene, and compare it with FGE. The robot repeats the trial until all eight objects are
grasped successfully in the given cluttered scene. Although it is necessary to determine
the grasping height in the proposed method, it is not trivial in a cluttered scene. In
this experiment, the candidate grasping height is set at regular intervals (each of 10
[mm] ), and the grasp pose is searched from the height where there is a certain amount
of one object area in the contact image to a height five steps lower. This method is
also applied to the FGE, and the grasp pose with the highest graspability score is
selected. As explained in section 3.2.2, the score map Gst in our proposed method
does not represent the original sti↵ness score; hence, it is di�cult to select a relatively
high score in all grasp candidates. Instead of the score, we calculate a new score, same
as the mean of sti↵ness (described in Eq. (15)), and delete the grasp pose candidate
whose size di↵erence between the contact image and collision image (cropped grasping
area) is higher than a threshold value (eliminating failure cases owing to the slippage
of the hand and the object).

Figure 9 shows some of the successful grasping results. The deformation rate eval-
uation is presented in Table 4. Here, it can be observed that the deformation of the
object is suppressed in several cases. For “Object 2”, the grasping result is not optimal
because the grasping direction di↵ers from the object’s surface; hence, the grasping
force is applied to a narrower surface than the FGE’s result. Regarding the success rate
of grasping, FGE succeeded in all attempts, and the proposed method failed in three
attempts. It is necessary to improve the method specifically introduced for the clut-
tered scene, as well as expand the method for 3D because the sti↵ness of the contact
point with the gripper cannot be properly measured using only 2D images.

5.3. Discussion

In the two experiments in section 5.1 and 5.2, when the deformation rate is more
than 20%, the damage was caused by large deformation in the FGE case (Figure 10),
which suggests that the proposed method can reduce damage. The reason for the
three failures in the experiments of section 5.2 is that the grasping pose selected was
often close to the edge of the object. This makes the contact surface smaller, and the
possibility of failure was increased by a small disturbance or error in the grasp pose
control. Therefore, we need to accurately determine the grasping depth in the clutter
scene, and determine the grasping pose based on the grasp stability.
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Table 4. Deformation rate results for each cluttered object in real-world

Name
Deformation rate

FGE [17] Proposed method

Object 1 12.19 8.373
Object 2 14.80 15.39
Object 3 24.35 12.42
Object 4 13.09 6.144
Object 5 16.59 9.129
Object 6 17.45 9.191
Object 7 19.10 16.14
Object 8 64.58 29.69

Mean 22.77 13.31

Figure 10. Some examples of grasping with significant deformation in the FGE case. Each deformation rate

was more than 20%.

6. Conclusion

In this study, we proposed a pix2sti↵ness estimation method, which generates a sti↵-
ness map that indicates the object’s sti↵ness for each pixel on an image using the
pix2pix architecture. We demonstrated that the sti↵ness estimation has a higher ac-
curacy when using depth images as input data than when adapting RGB. Furthermore,
we introduced a grasp pose detection method using a sti↵ness map based on FGE,
which we called GPD-sti↵ness. This method can robustly detect grasp poses in clutter
scenes in the real-world. However, more experiments are required for various objects,
and generating the sti↵ness map (data collection in section 3.1) is time consuming and
cumbersome because it is manually done. In the future, we would like to automati-
cally generate the annotated sti↵ness map using contact force (e.g. grasped distance
for each object [3]). Also, we would like to introduce a force-adjustable method that
can grasp with the smallest deformation by considering contact dynamics.
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