
Assembly Action Understanding from Fine-Grained Hand Motions, a
Multi-camera and Deep Learning Approach

Enrique Coronado, Kosuke Fukuda, Ixchel G. Ramirez-Alpizar, Natsuki Yamanobe,
Gentiane Venture and Kensuke Harada

Abstract— This article presents a novel software architecture
enabling the analysis of assembly actions from fine-grained
hand motions. Unlike previous works that compel humans to
wear ad-hoc devices or visual markers in the human body, our
approach enables users to move without additional burdens.
Modules developed are able to: (i) reconstruct the 3D motions
of body and hands keypoints using multi-camera systems; (ii)
recognize objects manipulated by humans, and (iii) analyze the
relationship between the human motions and the manipulated
objects. We implement different solutions based on OpenPose
and Mediapipe for body and hand keypoint detection. Addi-
tionally, we discuss the suitability of these solutions for enabling
real-time data processing. We also propose a novel method using
Long Short-Term Memory (LSTM) deep neural networks to
analyze the relationship between the detected human motions
and manipulated objects. Experimental validations show the
superiority of the proposed approach against previous works
based on Hidden Markov Models (HMMs).

I. INTRODUCTION

Flexibility and productivity demands towards Industry
4.0 have recently increased the interest in building cloud
database systems able to store and share useful information
enabling the easy generation of robotic applications [1].
A suitable approach for representing knowledge in these
databases is the use of affordances, which in the manu-
facturing context can be understood as “the relationships
that exist between objects available for manipulation and
the associated actions that humans or robots can take with
these objects” [2]. For building affordances it is necessary to
analyze human actions. This task requires the segmentation
and labeling of human motions as well as recognition of the
objects involved in the manipulation task. However, these
are challenging and complex processes often involving time-
consuming and manual operations [2]. The objective of the
project presented in this article is to create a modular and
usable framework that enables the easy creation of large-
scale databases using affordances as a knowledge source.
Therefore, this article presents an approach enabling the
analysis of the relationships between the human motions
with the objects in the environment. These relationships are

E. Coronado and G. Venture, are with the Department of Mechanical
Systems Engineering, Tokyo University of Agriculture and Technology, 2-
21-16 Nakacho, Koganei, Tokyo, Japan.

K. Fukuda and K. Harada are with the Department of Systems Innova-
tion, Graduate School of Science and Engineering, Osaka University, 1-3
Machikaneyama-cho, Toyonaka, 560-8531, Japan.

I. G. Ramirez-Alpizar, N. Yamanobe and K. Harada are with the Automa-
tion Research Team, Industrial CPS Research Center, National Institute of
Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku,
Tokyo, 135-0064, Japan.

Corresponding author’s email: enriquecoronadozu@gmail.com.

especially relevant in assembly monitoring [3] and human-
robot collaboration (HRC) [4] applications. In this context,
state-of-the-art frameworks enabling this capability are still
rare and far from being usable (i.e, efficient, effective, and
use-to-use) [5].

This article is organized as follows: in sections II and
III we describe related work and summarize contributions.
Section IV describes the proposed software architecture for
data acquisition and processing. Section V describes a novel
approach using Deep Learning to enable assembly action
analysis. Section VII presents experimental settings and
results. Conclusions follow.

II. RELATED WORK

Human motion understanding is a systematic process that
performs the sensing, segmentation, recognition, and analysis
of people’s movements [6], [7]. Frameworks enabling this
process are relevant for several disciplines, such as biome-
chanics [8], ergonomics [9] and Human-Robot Interaction
(HRI) [10]. Popular machine learning approaches used in
these works are Support Vector Machine (SVM) [11], Hidden
Markov Models (HMM) [11], Gaussian Mixture Models
(GMM) [10], and Deep Neural Networks (DNN) [12]. In
many of these works, the target actions to analyze are simple
gestures or everyday motions that do not involve fine-grained
motions of the fingertips. An exception is [13], in which
3D positions of hands and fingers are obtained from a
Leap Motion sensor for enabling classification of signs from
the American Sign Language. Many efforts focused on the
recognition of human actions and gestures compel humans
to wear special ad-hoc devices such as inertia sensors [14]
and gloves [15]. Because these devices are wearable, they
can represent a burden on the user [14]. As described in
[5], most of these ad-hoc devices can be cumbersome to
use due to the amount of sensors and cables attached to
the body. Moreover, communication between humans and
robots in manufacturing scenarios should be performed in a
natural way. Therefore, anything that can disturb co-workers
should not be attached to their body [5]. Other works propose
the use of daily-use wearable devices such as smartwatches
to recognize human activities [16], control robot actions
[10] and for Human-Robot Collaboration (HRC) tasks [17].
However, these devices can hardly be used to recognize fine-
grained movements of hands. Image-based systems are also
popular methods used for the analysis of human motions.
These systems are basically classified as markers-based and
marker-less. On the one hand, markers-based approaches



require that the user wears an special outfit and a set of mark-
ers carefully attached to the body. Therefore, this approach
presents similar issues that those works using wearable de-
vices. On the other hand, marker-less systems enable humans
to move and act in their environment naturally. Therefore,
they can be considered more suitable for unstructured and
real-world scenarios [5]. Marker-less approaches can use
single- multiple- and depth-based cameras. While the use of
single and depth cameras enables an easy setup, they often
provide poor robustness and performance in real settings [5].
Works developing gesture and action recognition systems
using single and depth cameras are reviewed in [18].

There exists a broad variety of works in different disci-
plines using image-based systems for the analysis of actions
or gestures from human motions. In [18] is reviewed some of
the most relevant applications. In many of them, body, object,
or hand recognition, as well as motion analysis, are processed
offline. These approaches are in fact unsuitable for real-
time interaction with robots. In the context of manufacturing,
very few related works can be found in the literature.
However, and to the best of our knowledge, none of the
related works meet the requirements presented in this article.
These requirements, which are focused on the context of
manufacturing and robotics are: (i) real-time detection and
3D reconstruction of fine-grain human hands, (ii) real-time
recognition of objects for assembly tasks, (iii) component-
based, and distributed system architecture, and (iv) analysis
of actions being executed by the humans.

Research articles performing the analysis of assembly
actions from human motions and the manipulated objects are
still rare. A relevant exception is [15]. However, the approach
used in [15] requires users to wear gloves and markers when
performing assembly tasks. Their approach was recently
improved in [2], by substituting the hand motion acquisition
system based on gloves by a four-camera system that uses
OpenPose [19] for obtaining body and hand 2D positions.
However, the work presented in [2] was constrained to
perform offline. In order to reach the current video standard
frame speed (29.97 fps) in a single-camera system using
OpenPose for skeleton recognition, it is required the use
of high-performance CPUs and GPUs [20]. In multi-camera
systems where body and hand recognition algorithms must
be processed in parallel for images of each camera, the
frame rate can be drastically reduced. Therefore, one of the
challenges of this article was to analyze alternatives to reach
the real-time body and hand recognition in multi-camera
systems. Other relevant and recent works that share some
of the objectives of this article are [21] [3]. On the one
hand, [21] proposes a multi-modal sensor fusion approach
for action recognition of assembly tasks. However, this
approach requires the use of wearable sensors. Moreover, this
approach uses Kinect, which as explained by [3], presents
poor performance and robustness in real settings as well as
limited recognition range; therefore, making this device more
suitable for the field of entertainment. On the other hand, [3]
presents a single-camera approach for recognizing assembly
actions. However, this approach is limited to repetitive and

tool-dependent actions, such as wrenching and hammering.
Due to the use of a single-camera system, their approach
mostly relies on algorithms for object recognition rather than
the analysis of the body and hand motions. Moreover, authors
reported recognition issues when parts of the body or objects
were occluded. On the other hand, a multi-camera system can
be used to deal with occlusion issues.

III. CONTRIBUTION

As described in section II most of the human under-
standing frameworks reported in the literature are limited
to be used in some specific disciplines or scenarios, burden
the human motion using some wearable device, or require
expensive computational resources to be effective. There-
fore, the main contribution of this article is the creation
of a usable (efficient, effective, and easy-to-use) software
architecture to enable the analysis of human action when
performing assembly tasks. To enable efficient and effective
recognition of the human body and hand motions we propose
different solutions based on OpenPose and Mediapipe. We
evaluated the performance and suitability of these solutions
for enabling real-time processing by using data obtained
from a real assembly task. Due to the very recent launching
of Mediapipe, this type of comparative analysis represents
a novel task. After obtaining 3D motion of human hands,
effective human action understanding is performed by a set of
long short-term memory (LSTM) recurrent neural networks.
One of these neural networks is designed and trained to
narrow down the pool of possible human actions. Then,
a second LTSM network uses this information to enable
effective recognition of assembly actions. The performance
superiority of this approach is validated and compared with
the method used in [2].

IV. SOFTWARE ARCHITECTURE

In order to enable the easy re-use and integration of the
proposed methods with different image acquisition systems
and robots, we propose a modular and distributed software
architecture. This architecture enables real-time recognition
of assembly objects, human body and hands as well as
data collection and visualization. Figure 1 shows the general
overview of this architecture. Modules composing this ar-
chitecture are connected using the publish-subscribe pattern
using the ZeroMQ [22] back-end of the NEP framework [23].
This enables high-performance communication between the
software modules [24] and the easy installation and re-use
of these modules in many different versions of Windows,
OSX, and Linux systems [23]. Integration with the Robot
Operating System (ROS) version 1.0 and 2.0 is a trivial task
that can be easily performed by changing the type of back-
end communication method to use when defining a publisher
in NEP. An example of how to change the back-end method
in NEP is shown in [23]. Modules composing the proposed
software architecture are defined below.

A. User Interface
We developed a user interface (figure 2) based on Node.js

to improve the usability of the system. This interface has



Fig. 1. General system architecture enabling data visualization, data collection, and online recognition of the human body, hands, and assembly objects.
Modules are connected using the publish-subscribe communication pattern.

three sections: 1) Camera settings, 2) Hand recognition and
3) 3D reconstruction. In section 1) the user can select the
type of camera to use and their resolution as well as the
number of cameras to use in the experiments. In section
2) the user can select the type of algorithms used for hand
recognition and tracking (i.e., Mediapipe or OpenPose) as
well as start and stop the python scripts performing these
actions. In section 3) a set of buttons enable the user to set
the camera parameters, execute the python script performing
3D reconstruction of hand positions as well as save 2D and
3D information of detected human hands in text files. This
interface also sends a software trigger, which is used to
synchronize image acquisition from the cameras.

Fig. 2. User interface developed for enabling synchronization of images,
data collection and 3D visualization of body and hands

B. Image acquisition and key-points extraction
To obtain the position of the human hands we use the

python versions of OpenPose and Mediapipe [25]. While
OpenPose has been widely used in different disciplines in-
cluding robotics, Mediapipe is a novel library developed and
very recently launched by Google [26]. Therefore, its use and
suitability in robotic applications is an unexplored area. Due
to its robustness, the official version of OpenPose available in
[27] is probably the most used for body detection. However,
this version requires top-end hardware to enable real-time
recognition of the human body and is considered highly
inefficient [28]. Moreover, lightweight implementations of
OpenPose, such as [29], do not offer many of the tools

available in the official version of OpenPose, such as hand
recognition. On the other, Mediapipe was designed to enable
fast machine learning inference and processing even on
common hardware. In this project, the main focus is to obtain
the 3D position of human fingers to be able to analyze the
relationship between manipulated objects and fine-grained
hand movements by using multi-camera systems. For this, we
propose different approaches for overcoming the low frame
rate issue that is associated with the official version of Open-
Pose. The first approach consists of the use of Mediapipe
to directly obtain and extract key-points of human hands.
The second approach combines Mediapipe and OpenPose. It
is relevant to highlight that the OpenPose hand recognition
algorithm requires the knowledge of the position of the wrist,
elbow, and shoulder to work. Therefore, rather than using the
results of OpenPose skeleton tracking as the input of the hand
recognition methods in OpenPose, we use Mediapipe to find
the wrist, elbow, and shoulder positions. These outputs from
Mediapipe algorithms for body detection are then used as
inputs for the OpenPose methods to recognize the hand key-
points. This approach is referred on this article as “Mediapipe
+ OpenPose”. Performance evaluation of these approaches
is presented in section VII. Images used as input to this
module can be acquired online by a synchronized multi-
camera system or be loaded from the computer.

C. Recognition of assembly objects

For enabling fast recognition of assembly objects, we
developed an object recognition module that integrates the
Deep Neural Networks (DNN) methods of OpenCV. For this,
we compiled OpenCV with CUDA and cuDNN support.
To validate this module we used a YOLO-based [30] deep
learning model. We use several images of assembly parts of
an airplane toy (figure 3) to train this model. However, the
implemented module can be used to recognize other types
of objects using different algorithms, such as MobileNetSSD
[31] and Mask-RCNN [32]. Figure 4 show examples of hand
recognition using only Mediapipe. Figure 5 shows examples
of the outputs of the Mediapipe + OpenPose approach, which
uses Mediapipe for fast skeleton tracking (not displayed), and



OpenPose for hand recognition. Figures 4 and 5 also show
examples of the outputs of the object recognition modules
using the trained model in YOLO.

Fig. 3. Airplane toy used as assembly task.

Fig. 4. Left and right images represent examples of hand recognition using
Mediapipe and object recognition using the trained YOLO model

Fig. 5. Left and right images represent examples of hand recognition using
Mediapipe + OpenPose module and object recognition using YOLO

D. 3D reconstruction of human body and hands
This module uses the Linear-Eigen method [33] for en-

abling the 3D reconstruction of the human body and hands
from 2D key-points published by the image processing
module. In this method the expression xi = P iX is used
to represent the mapping between a 3D space point X
and their 2D correspondence in the i-th image. This 2D
correspondence is defined in homogeneous coordinates as
xi = w(vi, vi, 1)

T , where vi and ui are the 2D position
in the i − th image and w a scale factor. This mapping
is performed by the camera projection matrix P i which is
derived from the camera extrinsic and intrinsic parameters.
To simplify calculation P i is often represented as

P i =

p1T
i

p2T
i

p3T
i

(R3×4
)
. (1)

Consequently the expression xi = P iX can be repre-
sented as

wui = p1T
i X

wvi = p2T
i X

w = p3T
i X

(2)

Motion Data

� � ��

LSTMLSTM
• Update the object

• Do not update

Fig. 6. Identification of in-hand object using LSTM.

Equation 2 is then reformulated to create a AX = 0
system by eliminating the scaling factor w, the system
becomes

uip
3T
i X − p1T

i X = 0

vip
3T
i X − p2T

i X = 0
(3)

The objective in the Linear-Eigen method is to solve the
homogeneous linear equations system that is given by the
expression AX = 0 subject to the constraint ‖X‖ = 1. This
can be done by performing the singular value decomposition
on the matrix A. More details are described in [33]. Outputs
of this module are the 3D position of body and human
hands for posterior data visualization and processing of some
monitoring or robotics system.

V. ASSEMBLY ACTION RECOGNITION USING LSTM

Previous work [2] used Hidden Markov Models (HMMs)
to recognize assembly actions on segmented motion data, i.e.
the assembly sequence recorded had to be segmented into
single actions. As HMMs have few parameters, their ability
to represent and thus recognize assembly actions with enough
precision is limited. In contrast, Recurrent Neural Networks
(RNNs) such as Long Short-Term Memory (LSTM) [34]
have a higher ability to represent sequences of data.

The action recognition using LSTM is performed for each
time frame, therefore there is no need of segmenting the
assembly sequence into single actions, as it is the case
when using HMMs. We use two modules of LSTM, one
for identifying the in-hand manipulated object and the other
for action recognition.

The pair of in-hand manipulated objects are identified
similarly to [2]. In this work, instead of using HMMs, we
use two layers of LSTM (as shown in figure 6) to determine
whether the recognized object (as explained in section IV-C)
should be updated or not, at each time frame for its input
to the second LSTM module. The object will be updated to
that whose recognized bounding box has one or more finger’s
inside it (as shown in figure 7), if the action is: free, pick or
release; and the object will not be updated if the action is
hold or manipulate.

The action recognition module is shown in figure 8.
In this module, we also employ two layers of LSTM for
action recognition. The number of layers was determined
experimentally. The first LSTM layer has the following three
inputs:

1) Sequence of time frames. From the time we want to
recognize the action to the T width past frames of data
(Np dimension). In this work, we use T = 10 (about 1
second). Each time frame contains the following data:



Fig. 7. Human’s fingers position inside the recognized bounding box of
an object.

• Joints angles of Thumb, Index, and Middle fingers
• Norm of the wrist velocity
• The average of the fingers’ velocity norm
• Opening width of the fingers and its change

2) The pair of identified objects in-hand (output of the
first LSTM module), with the addition of the label
“nothing in-hand”, express as a one-hot vector of size
No.

3) The possible actions selected based on the Action
Relationship, with the addition of the label “none”,
express as a vector of size Na. The selected actions
are represented with 1 and the rest are set to 0.

The output of the first layer is the input to the second
layer of LSTM. The second layer’s output is input to a full
convolutional layer, where the Softmax function outputs an
Na sized vector with the likelihoods for each action. The
action with the highest likelihood is the action recognition
result.

Motion Data

Pair of the manipulated 

objects

� � ��

Recognized Action

Possible actions 

defined by Action Relationships

�� (Ex. [1101..])

Primary object

��(Ex. [010…]

� � ��
� � ��

LSTMLSTM

Fig. 8. Action recognition using LSTM.

VI. VALIDATION OF THE PROPOSED SOFTWARE
ARCHITECTURE

One of the main challenges presented in this article is
to create a software architecture enabling real-time data
processing of human movements from multi-camera systems.
Therefore, in this section, we evaluate the performance of the
hand recognition modules proposed in this work. Dimension
used to evaluate the implemented modules are inference
time (latency), and recognition rates. Hand recognition ap-
proaches compared in this study are: (i) OpenPose in Python
(implemented in this article and often used in previous
works), (ii) Mediapipe in Python (proposed in this article),
and (iii) Mediapipe + OpenPose in Python (proposed in this
article). We tested two modules used in Mediapipe to obtain
hand key-points from images. The first one is denoted as

Mediapipe hands, which was launched in the first release of
Mediapipe in July 2020 [26]. The second one is denoted
as MediaPipe holistic [35], which performs simultaneous
hand, face, and body recognition and was recently launched
in December 2020. We used a laptop Alienware M15 with
a 2.60 GHz Intel(R) Core(TM) i7-107050H CPU with 16
GB of RAM and an Nvidia GeForce RTX 2070 with 8 GB
GDDR6 in Windows 10 for testing. Table I shows the results
obtained for latency for the different methods integrated. We
measured the time required to process images in a single-
camera (n = 1) system, a stereo-camera (n = 2) system, and
a multiple-camera system with n = 3, where n represents
the number of images that must be processed simultaneously.
Values of table I represent the mean value in seconds after
simultaneously processing 100 images (from each camera) in
the proposed systems. It is relevant to highlight that an “out
of memory error” message appeared when using OpenPose
for both body and hand recognition when the number of
images was n = 3. This is due to the amount of GPU
memory required for processing each image is approximately
3.5 GB. Therefore, to execute a multi-camera system of more
than 3 cameras, it will be required a more powerful GPU with
at least 12 GB of GPU memory.

Recognition rates for the implemented hand recognition
approaches are shown in table II. This table shows the
recognition rates (from 0 to 1) for the left and right hands.
These results were obtained from a total of 610 images of a
user performing the assembly of the airplane toy shown in
figure 3. Additionally we measured the latency presented by
the object recognition module using the same set of images.
This module was tested with the YOLO model trained to
recognize the assembly parts of the airplane toy. The mean
latency value obtained was 0.326 seconds when using the
CPU pre-compiled version of OpenCV, and a mean of 0.063
seconds when using an OpenCV version compiled from
source to enable the use of GPUs.

Results of table I and II indicate that the implemented
approaches using Mediapipe provide acceptable performance
in comparison to those using OpenPose. While Mediapipe
hands and Mediapipe holistic modules present in general
better latency, OpenPose, and Mediapipe + OpenPose so-
lutions provided better recognition rates. As shown in table
II, recognition rates obtained with OpenPose were 0.91 and
1.0 seconds for the left and right hands respectively. These
results outperform results obtained from Mediapipe hands
(which obtained 0.66 and 0.78) and holistic (which obtained
0.75 and 0.99) methods. However, OpenPose requires very
expensive hardware to enable real-time processing. As an
example, we consider the case where one camera is used
(n = 1). With this configuration and using OpenPose for
body and hand recognition, we obtained a latency of 0.2131.
This suggests that the used hardware could barely get 4.7
frames per second (fps). This frame rate can be increased
using the Mediapipe + OpenPose option to approximately 7.3
fps, which latency results were 0.1347 seconds. These values
are much lower than the current video standard frame speed
of 29.97 fps. On the other hand, we obtained much lower



TABLE I
LATENCY COMPARISONS OF IMPLEMENTED APPROACHES FOR HAND RECOGNITION. OPENPOSE REPRESENTS THE STATE-OF-THE-ART SOLUTION.

Method n = 1 n = 2 n = 3
OpenPose (body + hands) 0.2131 0.4125 error
Mediapipe (hands) 0.0250 0.0268 0.0283
Mediapipe holistic (hands) 0.0367 0.0381 0.0469
Mediapipe (body) + OpenPose (hands) 0.1347 0.2403 0.3476

TABLE II
RECOGNITION RATES OF IMPLEMENTED APPROACHES FOR HAND

RECOGNITION WITH n = 1

Method Left hand Right hand
OpenPose hands 0.91 1.00
Mediapipe hands 0.66 0.78
Mediapipe holistic 0.75 0.99

latency results using the module that implements Mediapipe
to directly perform the hand detection. Results of Mediapipe
hands were 0.025 (40 fps) when using one camera and
0.0283 (35.3 fps) when using images from 3 cameras at
the same time. Results of Mediapipe holistic were 0.0367
(27.2 fps) when using one camera and 0.0469 (21.32 fps)
when using images from 3 cameras. These results suggest
that Mediapipe implementations can be better suited for
applications requiring real-time data processing and when
the computational resources available are limited.

VII. VALIDATION OF THE PROPOSED LSTM NETWORK

A. Comparison between HMM and LTSM for action recog-
nition

To demonstrate the validity of the proposed action recog-
nition framework using LSTM, we also use HMMs for
action recognition as in [2]. We recorded the data of two
subjects (five times per subject) assembling the toy airplane
(figure 3) for training both the HMMs and the LSTM. In
the case of the LSTM, we used Gaussian Noise (average 0
and distribution 5[mm]) as data augmentation of the training
data (added two sets of data). For validation, we recorded the
assembly motions of five no pre-trained subjects (twice per
subject) different from those recorded for training (total of 10
assembly sequences). We divided the recorded sequence into
single motions, labeled them, and annotated the manipulated
object of each hand to create the Ground Truth of each
sequence to compute the accuracy (percentage of correctly
recognized frames) of both methods. As mentioned before,
the LSTM performs the action recognition per time frame,
thus we do not need to perform a segmentation of the
assembly sequence, which is needed for the HMM. Table III
summarizes the obtained recognition results, where “obj.
identification” denotes that the pair of manipulated objects is
obtained through object recognition, and “obj. Ground Truth”
means that we give the correct manipulated object as input,
all of them when using OpenPose only.

As it can be seen, both the in-hand object identification and
the action recognition accuracy when using LSTM (69.2%
and 85.1%, respectively) is better than the accuracy obtained

TABLE III
COMPARISON OF ACTION RECOGNITION RESULTS.

In-hand object Accuracy

identification obj. identification obj. Ground Truth

HMM 61.5% 39.2% 71.6%

LSTM 69.2% 54.0% 85.1%

when using HMMs (61.5% and 71.6%, respectively). Even
when we give the correct sequence segmentation of the
actions to the HMM the accuracy is 80.5%, which is still
below the accuracy when using LSTM. Therefore, for the
following analysis we only use LSTM.

B. Comparison between OpenPose and Mediapipe for action
recognition using LSTM

The proposed LSTM model was trained and validated
offline using the 3D information of hand motions produced
by OpenPose. However, as shown in section VII-B, the
online processing of data using OpenPose for multi-camera
systems requires very expensive hardware resources. In order
to test the robustness of the proposed LSTM model, we use a
set of images (n = 4) of one experimental subject performing
an assembly task as inputs to the module developed using
Mediapipe for hand detection. These results obtained using
Mediapipe hands and the modules defined in section IV are
used as inputs to the LSTM model. With this process, we try
to understand how much can the use of data from other li-
braries for hand recognition (which are more efficient but less
robust) affects the recognition rates of our LSTM model. It
is relevant to highlight that the images used in this evaluation
were not used for training the LSTM model. We compare the
outputs of the LSTM using the same experimental data when
human hands are obtained from OpenPose and Mediapipe.
While the accuracy reached using data from OpenPose was
63.04%, the accuracy when using Mediapipe was 51.02%.
These preliminary results were as expected, since OpenPose
provides more robust recognition capabilities. Even with less
accurate data provided by Mediapipe, as shown in table II,
the difference in recognition was less than 15%.

VIII. CONCLUSION

We proposed a set of modules enabling data collection and
analysis of assembly motions. Unlike most previous works
our system only uses images. Since this does not represent
an additional burden to human motions, our approach can
be more suitable to enable natural interactions in HRI and
HRC scenarios. We proposed different solutions to enable the



real-time data processing of human motions. The suitability
of these solutions will depend on the available computational
resources as well as the required accuracy and frame rate.
While a solution based on Mediapipe could offer accept-
able accuracy with less computational resources, which can
be suitable for real-time data processing, OpenPose would
provide better recognition rates. However, due to their more
expensive requirements, solutions using OpenPose could be
in many cases better suited for offline data processing. We
also demonstrated that using LSTMs yields better action
recognition than HMMs, and as it does not need to segment
the sequence of motions into simple actions the recognition
process is faster and accurate. In the future, we would like to
test using more training data for the LSTM, and also search
for other possible combinations of motion data that could
speed off the recognition without sacrificing much accuracy.

ACKNOWLEDGMENT

This paper is based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Indus-
trial Technology Development Organization (NEDO).

REFERENCES

[1] N. Yamanobe, W. Wan, I. G. Ramirez-Alpizar, D. Petit, T. Tsuji,
S. Akizuki, M. Hashimoto, K. Nagata, and K. Harada, “A brief review
of affordance in robotic manipulation research,” Advanced Robotics,
vol. 31, no. 19-20, pp. 1086–1101, 2017.

[2] K. Fukuda, N. Yamanobe, I. G. Ramirez-Alpizar, and K. Harada,
“Assembly motion recognition framework using only images,” in
2020 IEEE/SICE International Symposium on System Integration (SII).
IEEE, 2020, pp. 1242–1247.

[3] C. Chen, T. Wang, D. Li, and J. Hong, “Repetitive assembly action
recognition based on object detection and pose estimation,” Journal
of Manufacturing Systems, vol. 55, pp. 325–333, 2020.

[4] K. Darvish, F. Wanderlingh, B. Bruno, E. Simetti, F. Mastrogiovanni,
and G. Casalino, “Flexible human–robot cooperation models for
assisted shop-floor tasks,” Mechatronics, vol. 51, pp. 97–114, 2018.

[5] H. Liu and L. Wang, “Gesture recognition for human-robot collab-
oration: A review,” International Journal of Industrial Ergonomics,
vol. 68, pp. 355–367, 2018.

[6] G. V. Kale and V. H. Patil, “A study of vision based human motion
recognition and analysis,” International Journal of Ambient Computing
and Intelligence (IJACI), vol. 7, no. 2, pp. 75–92, 2016.

[7] N. Noceti, A. Sciutti, and F. Rea, “Modelling human motion.”
[8] M. E. Segura, E. Coronado, M. Maya, A. Cardenas, and D. Piovesan,

“Analysis of recoverable falls via microsoft kinect: Identification of
third-order ankle dynamics,” Journal of Dynamic Systems, Measure-
ment, and Control, vol. 138, no. 9, 2016.

[9] P. Maurice, A. Malaisé, C. Amiot, N. Paris, G.-J. Richard, O. Rochel,
and S. Ivaldi, “Human movement and ergonomics: An industry-
oriented dataset for collaborative robotics,” The International Journal
of Robotics Research, vol. 38, no. 14, pp. 1529–1537, 2019.

[10] E. Coronado, J. Villalobos, B. Bruno, and F. Mastrogiovanni, “Gesture-
based robot control: Design challenges and evaluation with humans,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 2761–2767.

[11] T. Mori, Y. Nejigane, M. Shimosaka, Y. Segawa, T. Harada, and
T. Sato, “Online recognition and segmentation for time-series motion
with hmm and conceptual relation of actions,” in 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2005, pp. 3864–3870.

[12] F. M. Noori, B. Wallace, M. Z. Uddin, and J. Torresen, “A robust
human activity recognition approach using openpose, motion features,
and deep recurrent neural network,” in Scandinavian conference on
image analysis. Springer, 2019, pp. 299–310.

[13] V. Hernandez, T. Suzuki, and G. Venture, “Convolutional and recur-
rent neural network for human activity recognition: Application on
american sign language,” PloS one, vol. 15, no. 2, p. e0228869, 2020.

[14] P. Neto, M. Simão, N. Mendes, and M. Safeea, “Gesture-based
human-robot interaction for human assistance in manufacturing,” The
International Journal of Advanced Manufacturing Technology, vol.
101, no. 1, pp. 119–135, 2019.

[15] K. Fukuda, I. G. Ramirez-Alpizar, N. Yamanobe, D. Petit, K. Na-
gata, and K. Harada, “Recognition of assembly tasks based on the
actions associated to the manipulated objects,” in 2019 IEEE/SICE
International Symposium on System Integration (SII). IEEE, 2019,
pp. 193–198.

[16] B. Bruno, F. Mastrogiovanni, A. Sgorbissa, T. Vernazza, and R. Za-
ccaria, “Analysis of human behavior recognition algorithms based on
acceleration data,” in 2013 IEEE International Conference on Robotics
and Automation. IEEE, 2013, pp. 1602–1607.

[17] P. K. Murali, K. Darvish, and F. Mastrogiovanni, “Deployment and
evaluation of a flexible human–robot collaboration model based on
and/or graphs in a manufacturing environment,” Intelligent Service
Robotics, vol. 13, no. 4, pp. 439–457, 2020.

[18] M. Oudah, A. Al-Naji, and J. Chahl, “Hand gesture recognition based
on computer vision: a review of techniques,” journal of Imaging,
vol. 6, no. 8, p. 73, 2020.

[19] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh,
“Openpose: Realtime multi-person 2d pose estimation using part
affinity fields,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[20] J. Akira, T. Fujii, S. Sato, and H. Nakahara, “An fpga realization of
openpose based on a sparse weight convolutional neural network,”
in 2018 International Conference on Field-Programmable Technology
(FPT). IEEE, 2018, pp. 310–313.

[21] M. Al-Amin, W. Tao, D. Doell, R. Lingard, Z. Yin, M. C. Leu,
and R. Qin, “Action recognition in manufacturing assembly using
multimodal sensor fusion,” Procedia Manufacturing, vol. 39, pp. 158–
167, 2019.

[22] J. Lauener, W. Sliwinski et al., “How to design & implement a modern
communication middleware based on zeromq,” in Proc of ICALEPCS,
vol. 17, 2017, pp. 45–51.

[23] E. Coronado and G. Venture, “Towards iot-aided human–robot in-
teraction using nep and ros: A platform-independent, accessible and
distributed approach,” Sensors, vol. 20, no. 5, p. 1500, 2020.

[24] A. Dworak, F. Ehm, P. Charrue, and W. Sliwinski, “The new cern
controls middleware,” in Journal of Physics: Conference Series, vol.
396, no. 1. IOP Publishing, 2012, p. 012017.

[25] Google, “Mediapipe official page,” https://mediapipe.dev/, [Online;
accessed 01-01-2021].

[26] ——. Mediapipe releases. [Online; accessed 01-01-2021]. [Online].
Available: https://github.com/google/mediapipe/releases

[27] C. P. C. Lab. Openpose github. [Online; accessed 01-01-2021]. [On-
line]. Available: https://github.com/CMU-Perceptual-Computing-Lab/
openpose

[28] D. Groos, H. Ramampiaro, and E. A. Ihlen, “Efficientpose: Scalable
single-person pose estimation,” Applied Intelligence, pp. 1–16, 2020.

[29] D. Osokin, “Real-time 2d multi-person pose estimation on cpu:
Lightweight openpose,” in arXiv preprint arXiv:1811.12004, 2018.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[32] K. He, G. Gkioxari, and P. G. Dollár, “R., 2017. mask rcnn,” in 2017
IEEE International Conference on Computer Vision, 2017, pp. 1440–
1448.

[33] J. Chen, D. Wu, P. Song, F. Deng, Y. He, and S. Pang, “Multi-view
triangulation: Systematic comparison and an improved method,” IEEE
Access, vol. 8, pp. 21 017–21 027, 2020.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[35] Google, “Mediapipe holistic,” https://ai.googleblog.com/2020/12/
mediapipe-holistic-simultaneous-face.html, [Online; accessed 01-01-
2021].


