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Abstract— Most of the cooking recipes available on the
internet describe only major cooking steps, since the detailed
actions are considered to be common knowledge. However,
when we want a robot to cook a meal based on a recipe, we
have to give to the robot a step by step plan of each of the tasks
needed to execute one recipe step. In this paper, we developed
a framework for inferring the executable cooking actions of
ingredients, in order to compensate for the common knowledge
of humans. We tuned the existing VGG16 Convolutional Neural
Network (CNN) to learn the physical features of ingredients.
Then, we built an inference model for six different cooking
actions based on the learnt physical features of ingredients.
The resultant inferred action(s) represents the next possible
action(s) that can be executed. As there can be more than one
executable action for the same ingredient state, we prioritize
the cooking actions considering the previously executed action,
for which kind of people the meal is being prepared for and
the cooking time allowed. We show experimental results on
five different types of ingredients that are not contained in the
training dataset of the CNN.

I. INTRODUCTION

In recent years, the use of robots in different areas has

broaden due to technological advances in both hardware and

software. Among others, the demand of home robots able to

clean, do the laundry, cook meals, etc., has increased due to

population aging, decreased birth rates, etc. There are few

works discussing robotic cooking tasks. Bollini et al. [1]

proposed a robot system called “BakeBot”, which is able of

following simple textual recipes for baking. Yamazaki et al.

[2] proposed a system able to recognize vegetables, a cutting

board and containers, the system is also able to manipulate

cooking tools such as a knife, a peeler, etc. Mu et al. [3]

analyzed the mechanics of a knife cutting vegetables and

experimentally validated the proposed control strategy for

slicing two different vegetables.

Unlike related work, in this paper we focus on the infer-

ence of cooking actions towards the automation of robotic

cooking tasks, i.e. robots able to autonomously prepare any

kind of meal with the minimum of instructions from the

user (e.g. a recipe). Most of the cooking recipes available

on the internet describe only major cooking steps, since the

detailed actions are considered to be common knowledge.

However, when we want a robot to cook a meal based on

a recipe, we have to give to the robot a step by step plan

of each of the tasks needed to accomplish a single recipe’s
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Fig. 1: Proposed framework for the inference of cooking

actions.

instruction. Also, as the variation of ingredients in types, size

and shapes is too large to be hard coded for manipulation

or vision recognition, a generalized framework able to deal

with any kind of ingredients is needed. Motivated by this,

we developed a framework for inferring cooking actions of

ingredients based on their physical features and based on the

user demands of cooking time and eating habits, as illustrated

in Fig. 1.

Similar works have focused only on the state recognition

of cooking objects. Paul [4] utilized and tuned the VGG16
[5] Convolutional Neural Network (CNN) model for the

classification of cooking objects into 7 different states, such

as whole, diced, julienne, etc., achieving a 77% of accuracy.

Jelodar et al. [6] proposed a Resnet-based [7] deep model

to classify cooking objects into 11 states, such as whole,

peeled, juiced, etc., and also fine tuned an individual model

for each cooking object (18 objects) in their dataset. In

contrast, the goal of this work is to determine which cooking

action should be executed next, based on the ingredient

physical features without the necessity of knowing its proper

name. Furthermore, the physical features can be employed

to make decisions on the type/size of gripper or tool needed

to manipulate the ingredient.

In this paper, we propose a framework for inferring

the executable cooking actions of ingredients, in order to

compensate for the common knowledge of humans. Our

framework is basically composed of two modules: the

physical features extraction module and the cooking action

inference module. The physical features extraction module

uses two VGG16 networks fine-tuned to learn the size and

shape of ingredients. The cooking action inference module is

composed by a “possibility model” for six different cooking

actions based on the learnt physical features of ingredients,

and an action priority level cost that infers one cooking

action. To estimate which cooking action should be carried

out next, the action priority level cost takes into account

the following conditions: the previously executed action, a

cooking time constraint (e.g. plenty, normal or in a hurry)

and eating habits (e.g. kid, adult, elder adult), where the
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Fig. 2: Labels used in the size classifier CNN.

last two conditions are user imposed. The resultant inferred

action represents the next action to be executed by the robot.

To verify the validity of the proposed framework, we tested

our framework with five different types of ingredient that are

not in the training dataset of the CNNs. The obtained results

demonstrate the validity of the proposed framework.

This paper is organized as follows: in section II, we

describe the physical features extraction module and show

experimental results of the trained CNNs. In III-B, we

explain the cooking action inference module. Next, in section

IV, we show the experimental results of the inferred cooking

actions of different ingredients. Finally, in section V, we give

the conclusions of this work.

II. PHYSICAL FEATURES EXTRACTION OF INGREDIENTS

In this section we describe the physical features extrac-

tion module of Fig. 1. This module is composed by two

VGG16 [5] CNNs fine-tuned to learn the size and shape of

ingredients. The VGG16 used in this work is composed of

13 convolutional layers and 3 fully connected layers. In this

work, we only tune the weights of the fully connected layers,

the convolutional layers’ weights are kept as the original

trained VGG16 network [5].

The first CNN will learn the size of the ingredient.

Considering possible future developments, we decided to

classify the ingredient’s size into 3 possible states: big (not

graspable by one hand), medium (graspable by one hand) and

small (difficult to grasp without using cutlery or some similar

tool), as illustrated in Fig. 2. It should be noted that the input

images are considered to be taken from a constant distance

from the ingredients, so that the predicted size agrees with

its real size.

The second CNN will learn the shape of the ingredient.

Taking into consideration the different types of cutting styles,

we decided to classify the ingredient’s shape into 6 possible

states: round, half-cut, long, slice, julienne and grain, as

illustrated in Fig. 3.

The data set for fine tuning both CNNs is composed of

images collected from the Web, and also from one portion

of the data set kindly provided by A. B. Jelodar et al. [6]. In

total we gathered 2, 700 images, from these 90% was used

for fine tuning and the rest for verifying the performance

of the trained CNNs. The images used for fine tuning were

increased to approximately 20, 000 images through flipping,

rotation, change of contrast, etc., from which 90% was used

for training the CNNs (parameter update) and the rest for

tuning the hyper-parameters of the CNNs. Table I shows the

micro and macro average results of the shape classifier (using

273 test images). Table II shows the average accuracy of the

round half-cut thin

slice julienne grain

Fig. 3: Labels used in the shape classifier CNN.

TABLE I: Shape classifier results (using 273 test images).

Index Micro-average Macro-average

Precision 0.912 0.917

Recall 0.912 0.918

F-measure 0.912 0.918

Accuracy 0.912 0.918

TABLE II: Shape classifier accuracy average per label

(using 273 test images).

Label Accuracy

Round 0.925

Half-cut 1.0

Thin 0.885

Slice 0.917

Julienne 0.820

Grain 0.967

TABLE III: Size classifier results (using 301 test images).

Index Micro-average Macro-average

Precision 0.906 0.895

Recall 0.906 0.891

F-measure 0.906 0.888

Accuracy 0.906 0.888

shape classifier per label. Most of the mistakenly classified

images had the labels slice, julienne or thin, among which

the julienne label yielded the lowest accuracy. This means

that it is easily to confuse the ingredient’s shape when it is

finely cut.

Table III shows the micro and macro average results of

the size classifier (using 301 test images). Table IV shows

the average accuracy of the size classifier per label. Most

of the mistakenly classified images are those where the

ingredient’s real size is different from the size they apparent

in the image (taken from a long distance or too close), and

also when the ingredient was sliced. Additionally, there is

an unbalanced between the number of medium labeled and

small labeled images on the dataset, which led to the medium

label accuracy to be the lowest.



TABLE IV: Size classifier accuracy average per label

(using 301 test images).

Label Accuracy

Big 0.871

Medium 0.835

Small 0.957
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Fig. 4: Flow of possible cooking actions of a potato.

III. INFERENCE OF COOKING ACTIONS

In this section we describe the cooking action inference

module, which is composed of a possibility model and an

action priority level cost function. The possibility model is

based on the notion of Affordances as defined by Gibson [8].

The action priority level cost function is determined based

on the user’s preferences (cooking time, eating habits).

A. Possibility model

The possibility model represents the possible cooking

actions (in this work, we consider only six) that can be

executed on the ingredient in its present state. For example,

as shown in Fig. 4, for a just harvested potato, we could

either cut it in half or peel it, if we cut it in half first, then we

can either slice it or peel it, etc. Most of the times, we have

more than one action that can be executed on the ingredient.

But also, based on the type of cooking, or eating habits, we

could determine which is the next action to be followed.

In this work, we consider the following six cooking

actions: cut in half, slice, rangiri (rough cut [9]), julienne,

chop, and pour. We define a possibility model between the

ingredient’s physical state and the cooking actions as the

grade of possibility for an action to happen given a physical

state, as shown in Table V. We discretized the grade of

possibility in five levels, HP (high probability), MP (medium

probability), LP (low probability), NP (not possible), and NI

(no influence). The first three represent how probable is the

action to be executed next. NP means that in the present

physical state of the ingredient the action cannot be executed.

TABLE V: Possibility model

Physical

feature

Action

Cut in
Slice Rangiri Julienne Chop Pour

half

Big HP LP NP NP NP NP

Medium MP HP HP LP NP NI

Small NP NP NP HP HP HP

Round HP LP NP NP NP NI

Half-cut MP MP NP NP NP NI

Thin LP HP HP NP NP NI

Slice NP NP NP HP NP HP

Julienne NP NP NP NP HP HP

Grain NP NP NP NP NP HP

Finally, NI refers to a physical feature that do not influence

the next action that can be executed. For example, for a big

ingredient the next highly probable action should be “cut in

half” (according to usual cooking methodologies), therefore,

for this action the “big” physical feature label represents a

higher priority than the “medium” label. On the other hand

if the ingredient is thin like a carrot, for the “thin” label

the highest priority is set to the “slice” action rather than

“cut in half”. Also, in the case of a half cut ingredient (e.g.

potato), the action could be “pour” however according to

usual cooking methodologies it should be first cut in smaller

pieces, therefore the grade given is NI.

Based on the probability model, the priority S(a) for a

given cooking action a ∈ A = {cut in half, ..., pour} is

computed as:

S(a) =
∑

l

λd(l,a)Pl, (1)

where λd(l,a) is the weight representing the grade of pos-

sibility d ∈ {HP, ..., NI} of the physical feature l ∈
{big, medium, ..., grain} with respect to action a, and Pl

represents the probability of the label l being the physical

feature that best describes the input image (the output of the

size and shape classifiers, described in the previous section).

Using equation 1 we can define the probability of execution

of every cooking action for a given input image. Although,

this is not enough to determine one single action to be

executed next, if we take into account the cooking time

allowed and the user’s eating habits we are able to prioritized

the order of execution of the cooking actions.

B. Action priority level cost function

As mentioned in the previous section, by taking into

account the allowed cooking time and/or the user’s eating

habits we can prioritize the order of execution of the cooking

actions. For this purpose, we define an action priority level

cost function fp that takes into account three things: 1) the

previously executed action, 2) for whom is the meal prepared

for and 3) the allowed (desired) cooking time. This function

is defined as:

fp(a) = wpreX(a1, a2) + wwhoY (a) + wtimeZ(a), (2)

where wpre, wwho, and wtime represent the weights of con-

sidering the previous action, for whom the meal is prepared



for, and the allowed (desired) time, respectively. The function

X(a−1, a−2) represents a constant whose value depends on

the two previously executed actions (a−1, a−2), and it is

defined as:

X(a−1, a−2) =







m2, if a = a−1 = a−2

m1, if a = a−1

0, otherwise

,

where m1 and m2 are negative constants. The function Y (a)
is defined as:

Y (a) =







n, if slice or julienne or chop

−n, if rangiri or pour

0, otherwise

,

where n represents a positive constant which value depends

on who is going to eat the meal (kid/senior or adult). The

function Z(a) is defined as:

Z(a) =







t, if julienne or chop

−t, if rangiri or pour

0, otherwise

,

where t is a negative constant if the meal should be prepare

as fast as possible and positive if there is no cooking time

limitation.

Like this, the inferred cooking action i is computed

through the next equation:

i = argmax
a∈A

(S(a) + fp(a)), (3)

where S(a) is computed using equation (1) and fp(a) using

equation (2).

IV. EXPERIMENTAL RESULTS

To verify the validity of the proposed inference model, we

use five different ingredients (bitter melon, apple, Japanese

persimmon, sweet potato, sausage) which are not included in

the data set used for training the shape and size classifiers.

We cut the ingredients using different cooking actions and

took a picture in each different physical state. We inferred the

next cooking action for each combination available of user’s

preference of time and who will eat the meal. The constants

involved in the inference model were empirically determined.

In the results presented in this section, the constants are set

as, λHP = 100, λMP = 50, λLP = 30, λNP = −70, λNI =
0, wpre = 1, wwho = 2, wtime = 2, m1 = −10, m2 =
−80. When the user wants the meal to be prepare as fast

as possible t = −10, when the user has no time constraint

t = 10, otherwise when there is no time consideration by

the user t is set to zero. Also, when the user indicates that

the meal is for kids or seniors n = 10, otherwise n = 0.

The first ingredient we use is a bitter melon, the input

images used are shown in Fig. 5. The correspondent results

to these images are shown in Table VI. In the who column,

“Yes” means the user indicated the meal is for kids or seniors,

and “No” means there was no input by the user regarding

who is going to eat the meal. For the time column, NC means

no time constraint, “-” means there was no input by the user,

and F means fast (the user requires the meal to be ready

(a) whole (b) slice

(c) julienne (d) rangiri 

Fig. 5: Input images of a bitter melon

TABLE VI: Action inference result for the images of a bitter

melon, shown in Fig. 5

Who Time
Physical features (shape/size)

thin / medium slice / small julienne / small

N NC slice julienne pour

N - slice julienne pour

N F rangiri pour

Y NC slice julienne pour

Y - slice julienne pour

Y F slice julienne pour

as fast as possible). The physical features listed are those

obtained from the size and shape classifiers. The inferred

actions were computed considering the previous action as the

one to its left column (for the first action, X(a) is set to zero).

It can be seen that when the user requires the preparation to

be faster, instead of starting slicing, the proposed framework

determines that doing a rangiri cut will finish faster the

cutting process, even though common knowledge dictates

that a bitter melon is usually sliced and then cut in juliennes

(as is the case when the user has no time constraints). It can

also be seen, that although the time is required to be fast, as

the who is set to be kids or seniors, the framework will keep

the normal cutting style since using the rangiri (Fig. 5(d))

yields bigger pieces that are harder to eat by kids or seniors.

In Table VII the results of the inferred actions for an

apple are shown. The input images are shown in Fig. 6.

It can be seen that for the image shown in Fig. 6(b), the

shape classifier mistakenly output as shape “slice”, when the

correct output was “half-cut”, since the shape feature was

incorrectly classify, the inferred actions based on this image

are also incorrect. However, we must point out that despite

of this, the following actions (of the following images) were

correctly inferred (all but one).

In Table VIII the results of the inferred actions for a

Japanese persimmon are shown. The input images are shown
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Fig. 6: Input images of an apple.

TABLE VII: Action inference result for the images of an

apple, as shown in Fig. 6

Who Time

Physical features (shape/size)

round/ slice/ slice/ julienne/ grain/

medium medium small small small

N NC
cut in

julienne julienne chop pour
half

N -
cut in

slice pour
half

N F
cut in

pour pour
half

Y NC
cut in

julienne julienne chop pour
half

Y -
cut in

julienne julienne chop pour
half

Y F
cut in

julienne pour
half

in Fig. 7. It can be seen that for the images shown in

Fig. 7(b) and (c), the size classifier and the shape classifier,

respectively, mistakenly output the size as “small” and the

shape as “slice”, when the correct output was “medium” and

“half-cut”. In this case, some of the inferred actions based

on these images were incorrect.

In Table IX the results of the inferred actions for a sweet

potato are shown. The input images are shown in Fig. 8.

Finally, in Table X the results of the inferred actions for a

sausage are shown. The input images are shown in Fig. 9.

In the last two ingredients, although their shape is similar,

(a) whole (b) half-cut

(c) julienne (d) chopped

Fig. 7: Input images of a Japanese persimmon.

TABLE VIII: Action inference result for the images of a

Japanese persimmon, as shown in Fig. 7

Who Time

Physical features (shape/size)

round / slice / slice grain /

small medium small small

N NC cut in half julienne julienne pour

N - pour pour julienne pour

N F pour pour julienne pour

Y NC cut in half julienne julienne pour

Y - cut in half julienne julienne pour

Y F pour julienne julienne pour

TABLE IX: Action inference result for the images of a sweet

potato, as shown in Fig. 8

Who Time

Physical features (shape/size)

thin/ slice/ julienne/ grain/

medium small small small

N NC slice julienne chop pour

N - slice julienne chop pour

N F rangiri pour

Y NC slice julienne chop pour

Y - slice julienne chop pour

Y F slice julienne chop pour

as their size is different, for the sausage it is difficult for the

shape classifier to determine that the ingredient is already in

juliennes in Fig. 9(c), and it is classified as “slice”, which

leads the system to generate again ”julienne” as the next

possible action.

The performance of the proposed inference model is

94.4% (only when the physical features were correctly identi-

fied), and the overall performance of the proposed framework

is about 82.2%. This means that we need a more robust size

and shape classifier to improve the overall performance of

the system.



(a) whole (b) sliced

(c) julienne (d) chopped

(e) rangiri 

Fig. 8: Input images of a sweet potato.

TABLE X: Action inference result for the images of a

sausage, as shown in Fig. 9

Who Time

Physical features (shape/size)

thin/ slice/ slice/ grain/

medium small small small

N NC slice julienne julienne pour

N - slice julienne pour

N F rangiri pour

Y NC slice julienne julienne pour

Y - slice julienne julienne pour

Y F slice julienne pour

V. CONCLUSIONS

This paper proposed a framework to estimate cooking

affordances based on the physical features of ingredients for

its use in robot task planning. We proposed a probability

model based on the notion of Affordances, where based on

the physical features of a given ingredient we define the

probability of an action to be executed next. We define a

priority level cost function that takes into account user’s

desired time for cooking and whose going to eat the prepared

meal. We showed experimental results for five different

ingredients (not included in the data set for training the

classifiers of size and shape), which verified the validity of

the proposed framework.

As a next step, we would like to improve the performance

of the size and shape classifiers and contemplate adding

other physical features. Also, increase the number of cooking

(a) whole (b) sliced

(c) julienne (d) chopped

(e) rangiri 

Fig. 9: Input images of a sausage.

actions that the system can infer and improve the priority

level cost function (to be independent of many parameters).

We would also like to extend our system and use recipes

taken from the internet and complement these instructions

with our system.
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