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Abstract—Reinforcement Learning (RL) methods have been

proven successful in solving manipulation tasks autonomously.

However, RL is still not widely adopted on real robotic systems

because working with real hardware entails additional challenges,

especially when using rigid position-controlled manipulators.

These challenges include the need for a robust controller to

avoid undesired behavior, that risk damaging the robot and its

environment, and constant supervision from a human operator.

The main contributions of this work are, first, we proposed a

learning-based force control framework combining RL techniques

with traditional force control. Within said control scheme, we

implemented two different conventional approaches to achieve

force control with position-controlled robots; one is a modified

parallel position/force control, and the other is an admittance

control. Secondly, we empirically study both control schemes

when used as the action space of the RL agent. Thirdly, we

developed a fail-safe mechanism for safely training an RL agent

on manipulation tasks using a real rigid robot manipulator. The

proposed methods are validated both on simulation and a real

robot with an UR3 e-series robotic arm.

Index Terms—Reinforcement Learning, Force Control, Com-

pliance and Impedance Control, Industrial Robots

I. INTRODUCTION

I
N the age of the 4th industrial revolution, there is much
interest in applying artificial intelligence to automate in-

dustrial manufacturing processes. Robotics, in particular, holds
the promise of helping to automate processes by performing
complex manipulation tasks. Nevertheless, safely solving com-
plex manipulation tasks in an unstructured environment using
robots is still an open problem[1].

Reinforcement learning (RL) methods have been proven
successful in solving manipulation tasks by learning complex
behaviors autonomously in a variety of tasks such as grasping
[2], [3], pick-and-place [4], and assembly [5]. While there
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are some instances of RL research validated on real robotic
systems, most works are still confined to simulated environ-
ments due to the additional challenges presented by working on
real hardware, especially when using rigid position-controlled
robots. These challenges include the need for a robust con-
troller to avoid undesired behavior that risk collision with the
environment, and constant supervision from a human operator.

So far, when using real robotic systems with RL, there
are two common approaches. The first approach consists of
learning high-level control policies of the manipulator. Said
approach assumes the existence of a low-level controller
that can solve the RL agent’s high-level commands. Some
examples include agents that learn to grasp [2], [3] or to
throw objects [6]. In said cases, the agent learns high-level
policies, e.g., learns the position of the target object and
the grasping pose, while a low-level controller, such as a
motion planner, directly controls the manipulator’s joints or
end-effector position. Nevertheless, the low-level controller is
not always available or easy to manually engineer for each
task, especially for achieving contact-rich manipulation tasks
with a position-controlled robot. The second approach is to
learn low-level control policies using soft robots [7], [8], [9],
manipulators with joint torque control or flexible joints, which
are considerably safer to work with due to their compliant na-
ture, particularly in the case of allowing an RL agent to explore
its surroundings where collisions with the environment may
be unavoidable. Our main concern with this approach is that
most industrial robot manipulators are, by contrast, rigid robots
(position-controlled manipulators). Rigid robots usually run
on position control, which works well for contact-free tasks,
such as robotic welding, or spray-painting [10]. However, they
are inherently unsuitable for contact-rich manipulation tasks
since any contact with the environment would be considered
as a disturbance by the controller, which would generate a
collision with a large contact force. Force control methods
[11] can be used to enable the rigid manipulator to perform
tasks that require contact with the environment, though the
controller’s parameters need to be properly tuned, which is still
a challenging task. Therefore, we propose a method to safely
learn low-level force control policies with RL on a position-
controlled robot manipulator.

This paper presents three main contributions. First, a control
framework for learning low-level force control policies com-
bining RL techniques with traditional force control. Within
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said control scheme, we implemented two different conven-
tional force control approaches with position-controlled robots;
one is a modified parallel position/force control, and the other
is an admittance control. Secondly, we empirically study both
control schemes when used as the action space of the RL
agent. Thirdly, we developed a fail-safe mechanism for safely
training an RL agent on manipulation tasks using a real rigid
robot manipulator. The proposed methods are validated on
simulation and real hardware using a UR3 e-series robotic arm.

II. RELATED WORK

1) Force control: Force control methods address the prob-
lem of interaction between a robot manipulator and its envi-
ronment, even in the presence of some uncertainty (geometric
and dynamic constraints) on contact-rich tasks [12], [13].
These methods provide direct control of the interaction through
contact force feedback and a set of parameters, which describe
the dynamic interaction between the manipulator and the
environment. However, prior knowledge of the environment is
necessary to properly define the controller’s parameters at each
phase of the task, such as stiffness. Existing methods address
said problem by either scheduling variable gains[14], using
adaptive methods for setting the gains [15], or learning the
gains from demonstrations [16]. Instead, we propose to directly
learn the time-variant force control gains from experience by
interacting and observing the environment.

2) Reinforcement learning and force control: Previous re-
search has also studied the use of RL methods to learn force
control gains. Buchli et al. [17] uses policy improvements
with path integrals (PI2) [18] to refine initial motion trajec-
tories and learn variable scheduling for the joint impedance
parameters. Similarly, Bogdanovic et al. [19], proposed a
variable impedance control in joint-space, where the gains
are learned with Deep Deterministic Policy Gradient (DDPG)
[20]. Likewise, Martı́n-Martı́n et al [21], proposed a variable
impedance control in end-effector space (VICES).

However, in all these cases, access to the robot manipulator’s
low-level control of joint torques is assumed, which is not
available for most industrial manipulators. Instead, we focus on
position-controlled robot manipulators and provide a method
to learn manipulation tasks using force feedback control where
the controller gains are learned through RL methods. Luo et
al. [22] propose a method for achieving peg-in-hole tasks on a
deformable surface using RL and validated their approach on
a position-controlled robot. They propose learning the motion
trajectory based on the contact force information. However, the
tuning of the compliant controller’s parameters is not taken into
account. We are proposing a method for learning not only the
motion trajectory based on force feedback but simultaneously
fine-tuning the compliant controller’s parameters.

Additionally, both Bogdanovic [19] and Martı́n-Martı́n [21]
study the importance of different action representation in RL
for contact-rich robot manipulation tasks. We similarly provide
an empirical study comparing different choices of action space
based on force feedback control methods for rigid robots on
contact-rich manipulation tasks.

3) Learning with real-world manipulators: Some research
projects have explored the capabilities of RL methods on real

robots by testing them on a large scale, such as Levine et al. [3]
and Pinto et al. [23], both in which a massive amount of data
was collected for learning robotic grasping tasks. However, in
both works, a high-level objective, grasp posture, is learned
from the experience obtained. In contrast, contact-rich tasks
require learning direct low-level control to, for example, reduce
contact force for safety reasons. On the other hand, Mahmood
et al. [24] propose a benchmark for learning policies on real-
world robots, so different RL algorithms can be evaluated on
a variety of tasks. Nevertheless, the tasks available in [24]
are either locomotion tasks with a mobile robot or contact-
free tasks with a robot manipulator. In this work, we propose
a framework for learning contact-rich manipulation tasks with
real-world robot manipulators based on force control methods.

III. METHODOLOGY

The present study deals with high precision assembly tasks
with a position-controlled industrial robot. Due to the diffi-
culty of obtaining a precise model of the physical interaction
between the robot and its environment, RL is used to learn both
the motion trajectory and the optimal parameters of a compli-
ant controller. The RL problem is described in Section III-A.
The architecture of the system and the interaction control meth-
ods considered are explained in Section III-B1, Section III-B2,
and Section III-C. Finally, our safety mechanism that allows
the robot to learn unsupervised is described in Section III-D.

A. Reinforcement Learning

Robotic reinforcement learning is a control problem where
a robot, the agent, acts in a stochastic environment by sequen-
tially choosing actions over a sequence of time steps. The goal
is to maximize a cumulative reward. Said problem is modeled
as a Markov Decision Process. The environment is described
by a state s 2 S. The agent can perform actions a 2 A,
and perceives the environment through observations o 2 O,
which may or not be equal to s. We consider an episodic
interaction of finite time steps with a limit of T time steps
per episode. The agent’s goal is to find a policy ⇡(a(t) | o(t))
that selects actions a(t) conditioned on the observations o(t)
to control the dynamical system. Given an stochastic dynamics
p(s(t+1) | s(t), a(t)) and a reward function r(s, a), the aim is
to find a policy ⇡⇤ that maximizes the expected sum of future
rewards given by R(t) =

P1
i �r(s(t), a(t)) with � being a

discount factor [25].
Soft-Actor-Critic: We use the state-of-the-art model-free

RL method called Soft-Actor-Critic (SAC) [26]. SAC is an
off-policy actor-critic deep RL algorithm based on the maxi-
mum entropy reinforcement learning framework. SAC aims to
maximize the expected reward while optimizing a maximum
entropy. The SAC agent optimizes a maximum entropy objec-
tive, which encourages exploration according to a temperature
parameter ↵. The core idea of this method is to succeed at
the task while acting as randomly as possible. Since SAC is
an off-policy algorithm, it can use a replay buffer to reuse
information from recent rollouts for sample-efficient training.
We use the SAC implementation from TF2RL1.

1TF2RL: RL library using TensorFlow 2.0. https://github.com/keiohta/tf2rl
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Fig. 1. Proposed learning force control scheme. The input to the system is a
goal end-effector pose, xg . The policy actions are trajectory commands, ax,
and parameters, ap, of a force controller.

B. System overview

Our proposed method aims to combine a force control
with RL to learn contact-rich tasks when using position-
controlled robots. Figure 1 describes the proposed control
scheme combining an RL policy and a force control method.
We assume knowledge of the goal pose of the robot’s end-
effector, xg . Both the policy and the force controller receive
as feedback the pose error, xe = xg � x, and the contact force
Fext. The velocity of the end-effector, ẋ, is also included in the
policy’s observations. The F/T sensor signal is filtered using a
simple low-pass filter.

The force control method has two internal controllers. First,
a PD controller that generates part of the motion trajectory
based on the pose error, xe. Second, a force feedback controller
that alters the motion trajectory according to the perceived
contact force, Fext.

The RL policy has two objectives. First, to generate a motion
trajectory, ax. Figure 2, shows how a simple P-controller (from
the force control method) would not be enough to solve the
task without producing a collision with the environment. For
most cases, the P-controller trajectory would just attempt to
penetrate the environment, since knowledge of the environ-
ment’s geometry is not assumed. Nevertheless, the P-controller
trajectory is good enough to speed up the agent’s learning since
it is already driven towards the goal pose. Therefore, to achieve
the desired behavior, the nominal trajectory of the robot is the
combination of the P-controller trajectory with the policy’s
trajectory. The second objective of the policy is to fine-tune the
force control methods parameters, ap, to minimize the contact
force when it occurs. We defined a collision as exceeding a
maximum contact force in any direction. Therefore, contact
with the environment is acceptable, but the policy’s second
goal is to avoid collisions. The policy also controls the P-
controller’s gains; thus, the policy decides how much to rely
on the P-controller trajectory.

1) Pose Control Representation: The pose of the robot’s
end-effector is given by x = [p,�], where p 2 R3 is the
position vector and � 2 R4 is the orientation vector. The
orientation vector is described using Euler parameters (unit
quaternions) denoted as � = {⌘, "}; where ⌘ 2 R is the scalar
part of the quaternion and " 2 R3 the vector part. Using unit
quaternions allows the definition of a proper orientation error
for control purposes with a fast computation compared to using
rotation matrices [27].

The position command from the force controller is xc =

Fig. 2. Proposed approach to solve contact-rich tasks. Assuming knowledge
of the goal pose of the robot’s end-effector, a simple P-controller can be
designed. Our approach aims to combine this knowledge with the policy to
generate the motion trajectory.

[pt,�t], where pt is the commanded translation, and �t is the
commanded orientation for the time step t. The desired joint
configuration for the current time step, qc, is obtain from an
Inverse Kinematics (IK) solver based on xc.

2) Learning force control: Two of the most common force
control schemes are considered in these work, parallel posi-
tion/force control [12] and admittance control [13]. The main
drawback of said control schemes is the requirement to tune
the parameters for each specific task properly. Changes in the
environment (e.g., surface stiffness) may require a new set of
parameters. Thus, we propose a self-tuning process using RL
method.

The policy actions are a = [ax, ap], where ax = [p,�]
are position/orientation commands, and ap are controller’s
parameters. ap is different and specific for each type of
controller, see Section III-C1 and Section III-C2 for details.
The policy has a control frequency of 20 Hz while the force
controller has a control frequency of 500 Hz.

C. Force control implementation

1) PID parallel Position/Force Control: Based on [12], we
implemented a PID parallel position/force control with the
addition of a selection matrix to define the degree of control of
position and force over each direction, as shown in Figure 3.
The control law consists of a PD action on position, a PI action
on force, a selection matrix and the policy position action, ax,

u = S(Kx
p xe +K

x
d ẋe) + ax+

(I � S)(Kf
pFext +K

f
i

Z
Fextdt)

(1)

where u is the vector of driving generalized forces. The
selection matrix is

S = diag(s1, ..., s6), sj 2 [0, 1]

where the values correspond to the degree of control that each
controller has over a given direction.

Our parallel control scheme has a total of 30 parameters,
12 from the position PD controller’s gains, 12 from the force
PI controller’s (PI) gains, and 6 from the selection matrix S.
We reduced the number of controllable parameters to prevent
unstable behavior and to reduce the system’s complexity.
For the PD controller, only the proportional gain, K

x
p , is

controllable while the derivative gain, Kx
d , is computed based

on the K
x
p . Kx

d is set to have a critically damped relationship
as

K
x
d = 2

q
Kx

p
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Fig. 3. Proposed scheme for learning PID parallel position/force control.
The RL agent controls the controller parameters PD gains, PI gains, and the
selection matrix, S.

Similarly, for the PI controller, only the proportional gain, Kf
p ,

is controllable, the integral gain K
f
i is computed with respect

to K
f
p . In our experiments, Kf

i was set empirically to be 1%
of K

f
p . In total, 18 parameters are controllable. In summary,

the policy actions regarding the parallel controller’s parameters
are ap = [Kx

p ,K
f
p , S].

To narrow the agents choices for the force control param-
eters, we follow a similar strategy as in [19]. Assuming we
have access to some baseline gain values, Pbase. We then
define a range of potential values for each parameter as
[Pbase � Prange, Pbase + Prange] with the constant Prange defining
the size of the range. We map the agent’s actions ap from the
range [�1, 1] to each parameter’s range. Pbase and Prange are
hyperparameters of both controllers.

2) Admittance Control: is used to achieve a desired dy-
namic interaction between the manipulator and its environ-
ment. The admittance controller for position-controlled robots
implemented is based on [28]. The admittance control is
implemented on task-space instead of the robot joint-space.
It follows the conventional control law

Fext = mdẍ+ bdẋ+ kdx (2)

where md, bd, and kd represent the desired inertia, damping,
and stiffness matrices respectively. Fext is the actual contact
force vector. x, ẋ, ẍ are the displacement of the manipulator’s
end-effector, its velocity and acceleration respectively.

The admittance relationship can be expressed in Laplace-
domain, adopting conventional expression of a second-order
system as

X

F
(s) =

1/md

s2 + 2⇣!ns+ !n
(3)

where ⇣ is the damping ratio and !n is the natural frequency,
and they can be expressed by the admittance parameters as

⇣ =
bd

2
p
kd md

!n =

r
kd

md

(4)

We are proposing a variable admittance controller, where
the inertia, damping, and stiffness parameters are learned by
the RL agent. Additionally, a PD controller is included in
our admittance control. The PD controller with the policy
action, ax, generates the nominal trajectory as explain in
Section III-B. The complete admittance control scheme is
depicted in Figure 4. The PD gains are also controlled by
the policy at each time step.

Fig. 4. Proposed scheme for learning admittance control. A PD controller
is included to regulate the input reference motion trajectory. The RL agent
controls the PD gains, as well as, the admittance model parameters (inertia,
damping and stiffness).

For the admittance control scheme, there are a total of 30
parameters; 12 from the position PD controller’s gains and 18
from the inertia, damping, and stiffness parameters. Similarly,
as mentioned in Section III-C1, we reduced the number of
controllable parameters to prevent unstable behavior of the
robot and reduce the system’s complexity. Following the same
strategy described in Section III-C1, of the PD controller,
only the proportional gain, Kx

p , is controllable. Additionally,
we considered the inertia parameter for each direction as a
constant, 0.1 kg·m2 in all our experiments as a similar payload
is used across tasks. Furthermore, we compute the damping
with respect to the inertia parameter and the stiffness parameter
by defining a constant damping ratio. From (4) we have that

bd = 2 ⇣
p
kd ⇤md

Therefore, only the stiffness parameters are controllable. In
total, the controllable parameters of the admittance control
are reduced to 12 parameters; 6 PD gains and 6 stiffness
parameters. In summary, the policy actions regarding the
admittance controller’s parameters are ap = [Kx

p , kd]

D. Fail-safe mechanism

Most modern robot manipulators already include a layer
of safety in the form of an emergency stop. Nonetheless,
the emergency stop exists at the extreme ends of the robot
limits and completely interrupts the entire training session if
triggered. To reactivate the robot, a human operator is required.
To alleviate this inconvenience, we propose a mechanism that
allows the robot to operate within less extreme limits. Thus,
training of an RL agent can be done directly on the position-
controlled manipulator with minimal human supervision.

Our system controls the robot as if teleoperating it by
providing a real-time stream of task-space motion commands
for the robot to follow. Therefore, we added our safety layer
between the streamed motion command and the robot’s actual
actuation. The fail-safe mechanism validates that the intended
action is within a defined set of safety constraints. As shown in
Algorithm 1, for each action we check whether an IK solution
exists for the desired position command, xc, if so, whether the
joint velocity required to achieve the IK solution, qc, is within
the speed limit.

If any of these validations are not satisfied, the intended
action is not executed on the robot, and the robot remains in
its current state for the present time step. Finally, we check if



BELTRAN-HERNANDEZ et al.: LEARNING FORCE CONTROL WITH POSITION-CONTROLLED ROBOTS 5

the contact force at the robot’s end-effector is within a defined
range limit. If not, the episode ends immediately.

The first two validations are proactive and prevent unstable
behaviors of the manipulator before they occur. In contrast,
the third validation is reactive, i.e., only after a collision
has occurred (the force limit has been violated), the robot is
prevented from further actions.

Algorithm 1 Safe Manipulation Learning
1: Define joint velocity limit q̇max

2: Define contact force limit Fmax

3: Define initial state x0

4: Define goal state xg

5: for n = 0,· · · , N � 1 episodes do

6: for t = 0,· · · , T � 1 steps do

7: Get current contact force: Fext

8: xe = xg � x

9: Get Observation: o = [xe, ẋ, Fext]
10: Compute policy actions: ⇡✓(ax, ap|o)
11: xc = control method(xe, ax, ap, Fext)
12: qc = IK solver(xc)
13: if qc not exists then continue

14: if |(qt � qc)/dt| > q̇max then continue

15: if Fext > Fmax then break

16: Actuate qc on robot
17: Reset to x0

E. Task’s reward function

For all the manipulation tasks considered, the same reward
function was used:

r(s, a) =w1Lm(kxe/xmaxk1,2) + w2Lm(ka/amaxk2)+
w3Lm(kFext/Fmaxk2) + w4⇢+ w5

(5)

where xmax, amax, and Fmax are defined maximum values.
Lm(y) = y 7! x, x 2 [1, 0] is a linear mapping to the range
1 to 0, thus, the closer to the goal and the lower the contact
force, the higher the reward obtained. || · ||1,2 is L1,2 norm
based on [7]. The xe is the distance between the manipulator’s
end-effector and the target goal at time step t. a is the action
taken by the agent. Fext is the contact force. ⇢ is a penalty
given at each time step to encourage a fast completion of the
task.  is a reward defined as follows

 =

8
<

:

200, Task completed
�10, Safety violation
0, Otherwise

(6)

Finally, each component is weighted via w, all w’s are hyper-
parameters.

IV. EXPERIMENTS

We propose a framework for safely learning manipulation
tasks with position-controlled manipulators using RL. Two
control schemes were implemented. With the following experi-
ments, we seek to answer the following questions: Can a high-
dimensional force controller be learned by the agent? Which

action space, based on the number of adjustable controller’s
parameters provides the best learning performance?

A description of the materials used for the experiments
is given in Section IV-A. An insertion task was used for
evaluating the learning performance of the RL agents with
the proposed method on a simulated environment, described
in Section IV-B. Finally, the proposed method is validated on
a real robot manipulator with high-precision assembly tasks.

A. Technical details

Experimental validation was performed both in a simulated
environment using the Gazebo simulator [29] version 9 and
on real hardware using the Universal Robot 3 e-series, with
a control frequency of up to 500 Hz. The robotic arm has a
Force/Torque sensor mounted at its end-effector and a Robotiq
Hand-e gripper. Training was performed on a computer with
CPU Intel i9-9900k, GPU Nvidia RTX-2800 Super.

B. Action spaces for learning force control

Each control scheme proposed in Section III has a number
of controllable parameters. The curse of dimensionality is a
well known problem in RL [25]. Controlling few dimensions,
number of parameters, makes the task easier to learn at the
cost of losing dexterity.

In the following experiment, several policy models were
evaluated. Each model has a different action space, i.e., a
different number of controllable parameters. We evaluate the
learning performance of the models described in Table I, four
models per control scheme. Each policy model has the same
six parameters to control the position and orientation of the
manipulator, ax, but a different number of parameters to tune
the controller’s gains, ap. From now on, we refer to each model
by the name given in Table I.

For a fair comparison, the action spaces were evaluated
on a simulated peg-insertion environment so that we could
guarantee the exact same initial conditions for each training
session. The task is to insert a cube-shaped peg into a task
board, where the hole has a clearance of 1 mm. Each policy
model was trained for 50.000 (50k) steps with a maximum
of 150 steps per episode. The complete training session was
repeated three times per model. Since the policy control
frequency was set at 20 Hz, each episode lasts a maximum
of 7.5 seconds. The episode ends if 1) the maximum number
of time steps is reached, 2) a minimum distance error from the

TABLE I
POLICY MODELS WITH DIFFERENT ACTION SPACES.

Control

Scheme

Name
Pose

Gains

PD
PI /

Stiffness

Selection

Matrix S

ax ap

Parallel

P-9 6 1 1 1
P-14 6 1 1 6
P-19 6 6 6 1
P-24 6 6 6 6

Admittance

A-8 6 1 1 -
A-13 6 1 6 -

A-13pd 6 6 1 -
A-18 6 6 6 -
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Steps
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Fig. 5. Learning curve of training session with active penalization of violation
of the safety constraints. Peg-insertion scenario on simulation.

target pose is achieved, 3) or if a collision occurs. In general,
a complete training session takes about 50 minutes, including
reset times.

Results: The comparison of learning curves for each policy
model evaluated is shown in Figure 5. In the figure, the average
cumulative reward per episode across the training sessions
(bold line) is displayed along with the standard deviation error
(shaded colored area). The results have been smoothed out
using the exponential moving averages, with a 0.6 weight, to
show the tendency of the learning curves.

From Figure 5, the overall best performance is achieved with
the policy models combined with the parallel control scheme.
By the end of the training session, these families of policies
can yield higher rewards than the policy models combined with
the admittance control scheme.

For the parallel control scheme, the model with the worst
performance is P-9; it can be seen that there is not enough
control of the controller’s parameters to learn a good policy
consistently. On the other hand, the model P-24 has the slowest
learning rate, but by the end of the training session, it can
consistently learn a good policy. The policy model P-14 has
the fastest learning rate and overall best performance.

For the admittance control scheme, the models A-13pd and
A-18 have the best overall performance, with A-13pd yielding
a cumulative reward as high as P-14 by the end of the training
session. The model A-8, similar to P-9, has one of the worst
performance; again, the lack of controllable parameters seems
to have a big impact on learning a successful policy.

It is worth noting that for both control schemes, the models
P-14 and A-13pd have the best overall performance. They
provide the best trade-off between system complexity and
learn-ability. On the other hand, the models with the largest
number of parameters P-24 and A-18 can learn successful
policies, but they require a longer training time to achieve it.

The parallel models’ learning curve has larger standard
deviation. One factor that contributes to these results is the
selection matrix S, which highly affects the performance of
the controller. Small changes of this parameter can make the
behavior completely different. The agent’s random exploration
of this parameter can result in very different results during the
learning phase.

C. Safe learning

The developed fail-safe mechanism was not only evaluated
as a mechanical safety that enables the real robot to explore

Re
wa

rd

Steps

Fig. 6. Learning curve of training without penalizing violation of safety
constraints on the reward function. Peg-insertion scenario on simulation.

TABLE II
COLLISION DETECTED DURING TRAINING SESSION.

Model
avg. # of collisions across training sessions

Penalization No penalization Difference

A-8 326 455 -39%
A-13 350 408 -16%

A-13pd 300 462 -54%
A-18 451 457 -1%
P-9 187 369 -98%

P-14 121 206 -70%
P-19 183 392 -115%
P-24 219 337 -43%

random action without human supervision. We validate the
usefulness of providing information to the robot about the
safety constraints violations. Thus, we compare the proposed
reward function Equation (5) with a variant that does not
provide any punishment when a safety constraint is violated,
i.e.,  gives a reward if the task is completed or zero otherwise,
see Equation (6). We trained all policy models with this
modified reward function.

Results: Figure 6 shows the comparison of the learning
curves of all models with a reward function that does not
penalize violation of safety constraints. The results clearly
show that the overall performance considerably decreases. The
learning speed also decreases, as can be noted by comparing
the performance of, for example, the model A-13pd. Learning
with active penalization helps the agent learn policies that
yield rewards of +100 by 12,000 steps while it takes as
much as 20,000 steps without penalization to achieve similar
performance. Parallel control models show similar results.
Moreover, the learning curves are nosier, meaning that the
models can not reliably find a successful policy.

Additionally, we counted the average number of collisions
detected during training sessions for each policy model. Ta-
ble II shows the training session results using the proposed
reward function with active penalization of the safety con-
straints and the reward function without penalization. In all
cases, we see a high decrease in the number of collisions
when actively penalizing collisions. In other words, the training
session can be considered safer when the robot gets feedback
on the undesired outcomes, i.e. when safety constraints are
violated. Particularly, in the case of the parallel control scheme,
the models have difficulty understanding that collisions are
a poor behavior; thus, those models keep getting stuck on
episodes that finish too soon due to collision. These results also
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Fig. 7. Ring-insertion task. Hole clearance of 0.2 mm. Cumulative reward
per step of 20,000-steps training sessions of A-13pd and P-14 policy models.

highlight that the models A-13pd and P-14 do not only learn
faster than other models but also produce the lowest number
of collisions within their family of policies. On the other hand,
the policy models with the highest number of parameters, A-
18 and P-24, are able to learn successful policies at the cost
of producing the highest number of collisions.

D. Real robot experiments

Our proposed method was validated on real hardware using
two high-precision assembly tasks. The first task involves an
insertion task of a metallic ring into a bolt with a clearance
of 0.2 mm, as shown in Figure 7. The second task is a more
precise insertion task of the metallic peg into a pulley, with a
clearance of 0.05 mm, as shown in Figure 8. Another robotic
arm holds the pulley, and the center of the pulley is slightly
flexible, which makes contact less stiff than the ring-insertion
task. However, since the clearance is smaller, the peg is likely
to get stuck if the peg is not adequately aligned, increasing
the difficulty of solving the task. The best policy models from
the previous experiment were used for training, P-14, and A-
13pd. Both models were trained for 20,000 steps, twice. The
episodes have a maximum length of 200 steps, about 10s.

1) Ring-insertion task results: From Figure 7, both models
A-13pd and P-14 can quickly learn successful policies that
solve the task. The high stiffness of the ring and bold makes
the task more likely to result in a collision. The model P-
14 produced an average of 45 collisions per training session,
while A-13pd produced 34. Despite firmly grasping the ring
with the robotic gripper, the position/orientation of the ring
can still slightly change. These slight changes can explain the
drops in performance during the training session. However, the
agents can adapt and learn to succeed in the task.

2) Peg-insertion task results: From Figure 8, we can see
that it takes a lot more learning time to find a successful policy
for both policy models compare to the ring-insertion task.
While both policy models find a successful policy after about
13k steps, A-13pd achieved better consistent performance. As
mentioned above, the physical interaction for this task is less
stiff; thus, the average collisions per training session were
fewer than in the ring-insertion task. For models A-13pd and P-
14, the average number of collisions was 4 and 26, respectively.

The evolution of the policy model A-13pd, across a train-
ing session, is shown in Figure 9. The figure displays the
observation per time step of only the insertion direction. The
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Fig. 8. Peg-insertion task. Hole clearance of 0.05 mm. Cumulative reward
per step of 20,000-steps training sessions of A-13pd and P-14 policy models.

Fig. 9. A-13pd: policy performance evolution on peg-insertion task. On the
left, performance of the initial policy tried by agent. On the right, performance
of the learned policy after training. All values correspond to the insertion
direction only. Only 160 steps are displayed for space constraints. Insertion
task divided into three phases: a search phase before contact (Yellow), a search
phase after initial contact (Red) and an insertion phase (Green).

actions, ax and ap = [Kx
p , kd] are also displayed. Observations

and actions have been mapped to a range of [1, -1]. The
peg-insertion task has three phases. A search phase before
contact (Yellow). A search phase after initial contact (Red).
An insertion phase (Green). On the left, the initial policy, we
can clearly see that the insertion was not successful even after
200 steps, as well as a rather random selection of actions.
On the contrary, on the right side, the task is being solved at
around 130 steps. On top of that, the controller’s parameters kd
and K

x
p have a clear response to the contact force perceived.

After the first contact with the surface (Red), kd and K
x
p

are dramatically reduced, as a result, decreasing motion speed
and reducing stiffness of the manipulator, which reduces the
contact force. Then, when the peg is properly aligned (Green),
kd and K

x
p are increased to apply force to insert the peg -

against the friction of the insertion- and to finish the task faster.

V. DISCUSSION

In this work, we have presented a framework for safely
learning contact-rich manipulation tasks using reinforcement
learning with a position-controlled robot manipulator. The
agent learns a control policy that defines the motion trajectory,
as well as fine-tuning the force control parameters of the ma-
nipulator’s controller. We proposed two learning force control
schemes based on two standard force control methods, parallel
position/force control, and admittance control. To validate the
effectiveness of our framework, we performed experiments in
simulation and with a real robot.
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First, we empirically study the trade-off between control
complexity and learning performance by validating several
policy models, each with a different action space, represented
by a different number of adjustable force control parameters.
Results show that the agent can learn optimal policies with
all policy models considered, but the best results are achieved
with the models A-13pd and P-14. These models yield the
highest reward during training, proving to be the best trade-
off between system complexity and learn-ability.

Second, results on a real robot showed the effectiveness
of our method to safely learn high-precision assembly tasks
on position-controlled robots. The first advantage is that the
fail-safe mechanism allows for training with minimal human
supervision. The second advantage is that including informa-
tion about the violation of safety constraints on the reward
function helps speed up learning and reduce the overall number
of collisions occurred during training.

Finally, in the usual peg insertion task, the motion trajectory
is essential when the robot is in the air, while the force control
parameters become essential when the peg is in contact with
a surface or the hole. Results show that our framework can
learn policies that behave accordingly on the different phases
of the task. The learned policies can simultaneously define
the motion trajectory and fine-tune the compliant controller to
succeed in high-precision insertion tasks.

One of the limitations of our proposed method is that
the performance is highly dependent on the choice of the
controller’s hyperparameters, more specifically, the base and
range values of the controller’s gains. In our experiments, we
empirically defined said hyperparameters. However, to address
said limitation, an interesting avenue for future research is to
obtain these hyperparameters from human demonstrations, and
then refine the force control parameters using RL. Additionally,
for simplicity, we assume knowledge of the goal pose of the
end-effector for each task. However, vision could be used to
get a rough estimation of the target pose to perform an end-
to-end learning, from vision to low-level control, as proven in
previous work [7].
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