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Abstract— This work proposes a method for recognizing and
segmenting assembly tasks into single motions. First, using a
motion capture system based on pose estimation from multiple
points, we obtain a time series data of the human’s motion
during an assembly task (motion data). We use an object
detector algorithm to determine the assembly parts and tools
that the user (human) is grasping. Then, we divide (segment)
the assembly motion based on the change of the manipulated
object and the velocity of the hand. We carry out the motion
recognition of the segmented motion data by using several
Hidden Markov Models (HMMs) that represent the actions that
can be executed with the manipulated object(s). We recorded
the assembly motion of an airplane toy done by two experts
for training the HMMs and recorded the assembly motion of
five subjects to verify the validity of the proposed method.

I. INTRODUCTION

In recent years, the number of ongoing research on the
automatic robot motion generation of assembly tasks towards
the automation of assembly tasks in factories has increased.
Also, there has been research endeavors to construct a
database to store human’s motions for the automatic gen-
eration of assembly motions for robots [1], [2]. In these
endeavors, the segmentation of an assembly task motion into
single motions and its respective label (motion name) has to
be done for each of these motions, in order to be stored in the
database. So far, this segmentation and labeling is manually
done and it becomes time consuming and tedious when we
have a large-scale database. To solve this problem, in this
work we propose a framework for the automatic motion
segmentation and recognition of assembly motions done by
humans without burdening them.

Previous work on motion recognition had aimed at rec-
ognizing the human’s pose or gestures. Mori et al. used
a Support Vector Machine (SVM) to recognized the pose
of a human. They also proposed a segmentation method
using HMMs based on the probability of the recognized
pose [3]. Aksoy et al. proposed a method for clustering
motions based on the description of the relationship between
position and contact of the hand and object [4]. However, in
these work the targeted motions are simple manipulations,
everyday motions, etc., that do not involve fine movements of
the fingertips. They have not tackled assembly motions done
by humans. In this work, we aim to recognize manipulation
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Fig. 1: Overview of proposed recognition system.

motions involving fine movements of the fingertips such as
screwing a bolt, using a screwdriver, etc.

Regarding the identification of hand’s motions and/or pos-
ture of fine manipulations, research using wearable sensors
has been done. Kubota et al. used a surface electromyo-
graphic (sEMG) sensor in combination with a motion capture
system and proved that the sEMG sensor is effective in
identifying fine motions [5]. Adrien et al. recognized motions
using information from datagloves, motion capture suits,
etc., and analyzed the effectiveness of sensor information
by performing a feature selection [6]. Even though using
wearable sensors might improve the motion recognition
performance, the reality is that for recording data at factories,
etc., there are constraints in space and the environment
thus it is almost impossible to use such sensors. For this
reason, in this work, we only use four cameras and no
special sensors for tracking the human’s motions and the
manipulated objects, as shown in Fig. 1. From the obtained
data, we derive features equivalent to those obtained from
wearable sensors and perform motion recognition.

As assembly tasks are composed of advanced manip-
ulations involving fine motions of the fingertips, motions
might look similar but depending on the manipulated object,
purpose of the motion, etc., their name labels might differ.
When the aim is to build a motion database for storing
human’s motions to be use by robots, it is very important
to appropriately label these motions. In our previous work
[7], we proposed a method for motion recognition that uses
the concept of affordances to define action relationships with
the manipulated objects. However, in this work we propose
a method that does not use wearable sensors nor markers
to track the human’s and object’s position, thus removing
motion and space constraints generated by these sensors
and markers. Also, we revise the segmentation method and
improve it to make possible the recognition of assembly
motions when the same object is being manipulated con-



tinuously. Furthermore, to prove the validity of the proposed
framework and the role of the defined action relationships,
we recorded the assembly task of an airplane toy done by
five subjects.

This paper is organized as follows: in section II we de-
scribe the proposed motion recognition framework. Then, in
section III we present, analyze and discuss the experimental
results obtained. Finally, in section IV we give the main
conclusions of this work and discuss future directions.

II. MOTION RECOGNITION FRAMEWORK

In this section, the proposed framework for motion seg-
mentation and recognition is described. First, we explain the
action relationship used for narrowing down the possible
action to be recognized. Next, we describe how the human
motion data was obtained. Then, we explain the method used
to identify the manipulated object. Finally, we describe the
motion segmentation and Hidden Markov Models used for
motion recognition. The outline of the proposed framework
is shown in Fig. 1.

A. Action Relationships

In our previous work [7], we defined action relation-
ships between manipulated objects and actions based on
the affordance concept. These action relationships refer to
the assembly actions that can be executed depending on
the combination of objects being manipulated. Using this
information, the motion candidates for recognition can be
narrowed down, as long as the manipulated object is known
(recognized). Thus, the efficiency and performance of the
recognition process is expected to improve. In this work,
besides verifying the validity of the proposed recognition
framework, we also compare our results with those without
using the action relationship definition.

B. Motion Data

The position of a human doing an assembly task is
obtained using OpenPose [8]–[11]. From the data obtained
using OpenPose, we compute the desired features for motion
recognition. OpenPose is an open software based on deep
learning that detects the human skeleton in 2D from a given
image. It can also detect the hand and fingers’ joints in 2D
(x, y). However, from one image we cannot obtain the depth
information of the human position, we can only obtain the
2D position. As we want to recognize assembly motions
such as pick, screw, etc., where the change in 3D position is
important, we use the 2D information from four cameras to
compute by triangulation the 3D position information of the
human motion, as shown in Fig. 2.

The hand and finger’s joint position p⃗j = (x, y, z) ob-
tained from the measured 3D position are in the camera
coordinate frame. This joint position is a feature that impairs
the generalization of the motion recognition because its
value varies depending on where the camera is installed
and the position of the human with respect to the camera.
Therefore, instead of using the joint’s position directly, we
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Fig. 2: Obtaining 3D pose from four 2D images.

Fig. 3: Computation of joint’s angles from joint’s positions.

use the following features to preserve the generalization of
our method.

• Joints angles of Thumb, Index, and Middle fingers
• Norm of the wrist velocity
• The average of the fingers’ velocity norm
• Opening width of the fingers and its change

From the joint position p⃗j we compute the vector between
joints as v⃗j = p⃗j − p⃗j−1, from which we compute the joint
angle:

θj = arccos
v⃗j · v⃗j+1

∥v⃗j∥ ∥v⃗j+1∥
,

as illustrated in Fig. 3. In case there is occlusion from the
object, the 3D position of the human’s hand skeleton is not
obtained. In these cases, we do a linear interpolation between
the last computed 3D positions. The velocity magnitude of
the joint’s position is computed as ∥p⃗j(t)− p⃗j(t− 1)∥, from
which we compute the wrist velocity and the average velocity
of the hand. These features related to the motion in the



workspace are use to represent motions like insert and hold,
where the motion in space is more representative of the task
than the joint’s angles. The opening width of the fingers
is defined by the distance between the middle and thumb
fingers or the index and thumb fingers as: opening width =
min{∥p⃗index − p⃗thumb∥ , ∥p⃗middle − p⃗thumb∥}.

C. Object Detection and Identification of Manipulated Ob-
jects

In our previous work [7], we used AR markers to detect
the position of the objects and used the distance between
the hand and the object to determine the object that was
being manipulated. However, the objects in which an AR
marker can be attached are limited due to their size, thus,
it is not possible to use AR markers when doing assembly
motions where small parts are involved. Also, when using
AR markers there is a limit on the usable working space due
to the maximum recognizable distance of the AR marker
and its possible occlusion throughout the task, resulting in
unnatural motions that affect the motion recognition perfor-
mance. For this reason, in this work we use the YOLO [12]
object detector algorithm to obtain the object’s position. The
manipulated object is identified based on the human motion
data obtained using the method described in section II-B. The
YOLO object detector is based on a single Convolutional
Neural Network (CNN) which makes it faster than other
object detectors, and it also gives the user the option of
trading off speed for accuracy. In this work, we use the class
and bounding box information detected by YOLO.

The manipulated object identification is done following
the next steps:

1) We employ the state transitions of a Hidden Markov
Model (HMM) to differentiate hand states, as shown
in Fig. 5. From the training data, all the motions are
defined as “manipulate” except for the “hold”, “pick”
and “release” motions. “Release” is defined as the
motion from the time the task finishes until 0.5 s.
has passed. When the predicted state by the HMM is
“manipulate” or “hold”, the manipulated object is kept
the same, otherwise we go to the next step. This step is
intended to be robust against occlusion from the hand.

2) As shown in Fig. 4, we determine the manipulated
object as the one that has inside its bounding box the
2D position of any of the fingers’ joints (detected by
OpenPose). In case there are more than two objects
with fingers inside their bounding boxes, the object
that has more joints inside its bounding box is chosen.
Considering object detection failure, the last recorded
data of the object detection is used for this step.

We obtain a time series of object data for each hand by
identifying the manipulated objects. These data will be use
for the motion segmentation (section II-D) and the motion
recognition (section II-E).

D. Motion Segmentation

To carry out the motion recognition method described in
section II-E it is necessary to segment the motion data into

Fig. 4: Estimated 2D hand’s position by OpenPose and detected
objects by YOLO.
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Fig. 5: HMM’s states for identifying the manipulated object.
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Fig. 6: Motion segmentation by thresholding using hysteresis on
the wrist velocity.

single motion segments. In our previous work [7] we only
used the change in the manipulated object to segment the
motion, however, the series of consecutive motions that do
not change of manipulated object such as “pick”, “insert”,
“screw” could not be correctly segmented. In this work,
besides segmenting the motion based on the change of the
manipulated object, we also segment based on hysteresis
thresholding of the motion during the manipulation of one
object. The intervals of time when then wrist velocity
surpasses the first threshold minV al and it also surpasses
the second threshold maxV al are segmented as “the arm
is moving”, otherwise it is segmented as “the arm is not
moving”, as shown in Fig. 6. In this paper, we define the
thresholds empirically as minVal= 0.05 and maxVal= 0.15.
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E. Motion Recognition using HMMs

We employ several Hidden Markov Models [13] to rec-
ognize the motion corresponding to a specific object for
the segmented motions (these HHMs are different from the
one used in section II-D for differentiating hand states). An
HMM is a stochastic process model composed of a time
series data. The parameters of an HMM are the hidden state
S = {si} (i = 1, 2, ..., N), its transition state probability A,
and the probability B = {bij} that the hidden state si pro-
duces the observed state oj . When the observation sequence
O = {ok} (k = 1, 2, ..., T ) is given, the probability p(O|λ)
of the HMM λ generating the sequence O is computed
using the Viterbi algorithm [14], this probability is called
likelihood. In this case, where several HMMs are use for
motion recognition, the resulting (recognized) motion is that
of the HMM with highest likelihood p(O|λ). As explained
above, an HMM is a sequence learning method, that is easy
to implement for selecting and comparing multiple HMMs
(it does not require a large dataset for training). For these
reasons HMMs are used in this work.

We trained one HMM per pair of object and motion
(42 in total). The number of hidden states was empirically
determine to be N = 5 for all HMMs. The probability B
and the state transition probability A are estimated using
the featured data described on section II-B as the observed
sequence O and the Baum-Welch algorithm [15]. We select
the HMMs to be use for motion recognition from the combi-
nation of grasped objects (determine as described in section
II-C) by both hands according to the action relationship
define previously. For example, as shown in Fig. 7, when the
assembly motion includes a bolt, the possible actions related
to the bolt are selected as candidate motions, in this case
“pick”, “hold”, and “move”, then, their associated HMMs
are use to compute their likelihood. If on the opposite hand,
an object with screw holes such as body or wing is being
grasped the HMMs associated to the “insert” and “screw”
motions are also added as candidates. By training the HMMs
corresponding to these motions per object, it has the effect
of considering the motion variation due to size and shape of
the manipulated object.

III. EXPERIMENTS

In this section, we describe the experiment carried out to
verify the validity of the proposed method. First, we explain
about the data collection and the assembly tasks recorded.

(a) Assembly of composite parts (propeller, chassis, rear part)

(b) Assembly of the body part (c) Fully assembled airplane

Fig. 8: Assembly tasks of an airplane toy

TABLE I: Assembly actions list for the airplane task and main
manipulated objects

Action Manipulated objects Description

pick any picking or grabbing an object

hold any holding or supporting an object

move any putting on the table or moving

insert
bolt & nut,

chassis & wheel
insertion action

screw
bolt & nut,

bolt/nut & screwdriver
screwing and tightening

place
body, wing,

window(cockpit)

placing in the proper position

of another part

Next, we describe about the evaluation criteria used. Finally,
we discuss the obtained results.

A. Data Collection

To verify the validity of the proposed method, we use
the task of assembling an airplane toy. This task includes
motions using small parts such as bolts, nuts, etc., and also
motions using a screwdriver to screw bolts, as shown in
Table I. Due to working space constraints (lack of space)
and the poor stability of the object detection YOLO when
multiple objects are in the same image, we divided before-
hand the assembly process of the airplane toy into three parts
as shown in Fig. 8.



TABLE II: Average accuracy and standard deviation (in parenthesis) for all trials. “Case A” is when only the frames with the object
correctly identified are used. “Case B” is when the object information is given from the Ground Truth data (all frames are
used). “Case C” is when both the object and the segmentation information is given from the Ground Truth data (all frames
are used).

Object

identification

Proposed

method

Comparison

method

Case A Case B Case C

Proposed

method

Comparison

method

Proposed

method

Comparison

method

Proposed

method

Comparison

method

Overall

accuracy

0.616 0.410 0.373 0.664 0.591 0.729 0.665 0.823 0.760

(0.131) (0.112) (0.127) (0.088) (0.131) (0.076) (0.085) (0.094) (0.092)

Accuracy by

object/motion type

0.502 0.265 0.197 0.514 0.446 0.530 0.418 0.686 0.570

(0.109) (0.076) (0.075) (0.105) (0.113) (0.078) (0.088) (0.110) (0.125)

Workspace

Cameras

Fig. 9: Environment setup for experiments

The assembly motion data was obtained through the
method explained in section II-B. The experimental setup
used in this work is shown in Fig. 9. The four cameras were
synchronized to record video at a 10 fps rate. To obtain the
3D position of the human’s motion, the user had to carry out
the assembly task inside the field of view of the four cameras,
as illustrated in Fig. 9. The motion data needed to train the
HMMs was obtained from two subjects. To decrease the
number of frames lost due to failure in the pose estimation
of OpenPose, the assembly task was further divided in a total
of seven processes (only when recording the training data),
and each process was recorded 10 times (five per subject).

For the test data set, we recorded the assembly motion
of five subjects (different from the subjects recorded for
the training data), two times per process per subject (30 in
total). We segmented the motions of each hand and labeled
them with their corresponding motion name to generate the
Ground Truth of the test data.

To train the object detector YOLO with the airplane toy
parts, we took 20 images (approx.) of each airplane toy part
and tool (alone). We also used around 100 images from the
ones taken to train the HMMs (where the objects are clearly
visible), and labeled the object’s name and bounding box by
hand for YOLO to learn the objects used in this work.

B. Evaluation

To evaluate the proposed method, we compared the motion
and object label of each recorded frame with the Ground
Truth data and compute the rate of labels matching it. We
computed the overall accuracy and the accuracy per type of

motion for each assembly task trial.
Furthermore, we also evaluated the proposed method when

we do not narrow down the candidate actions based on the
action relationship of the manipulated objects. Namely, from
the data of the motions listed in Table I, we trained six
HMMs (one per motion) without distinguishing the manipu-
lated object (we called this the “comparison method”). The
motion segmentation procedure is the same, and then, the
recognized motion is the one with highest likelihood among
the six trained HMMs. As the proposed method heavily
depends on the correctly identification of the manipulated ob-
ject and segmentation of the data, we evaluated the proposed
and the comparison method when the manipulated object
was correctly identified only. Additionally, we verified the
effect that the proposed segmentation method has over the
recognition rate, by giving the identified object information
from the Ground Truth data as an input. Finally, we also
examined the motion recognition method performance, by
giving the identified object and the segmentation points from
the Ground Truth data as inputs.

C. Results and Discussion

Using the evaluation criteria described in section III-B, we
evaluated each of the 30 test trials. The average and standard
deviation are shown in Table II.

The accuracy of the manipulated object identification over
all trials was 0.616. The performance of the manipulated
object identification mainly depends on the object recog-
nition (YOLO) accuracy, and the HMM that updates (or
not) the object information when the object recognition fails
(as described in section II-C). Therefore, we can conclude
that the feature of the motion data used for this HMM was
not enough to correctly identify the manipulated object. The
overall accuracy of the proposed method was 0.410 and that
of the comparison method was 0.373.

Isolating the effect of the manipulated object identification
(i.e. considering only the frames where the manipulated
object was correctly identified, refer as “Case A”), the
proposed method accuracy was 0.664 and the comparison
method accuracy was 0.591. From this results, we can see
that the motion recognition accuracy increased twice its
value, which means that the performance of the manipulated
object identification greatly influences the motion recognition
accuracy.



On the other hand, when the correct manipulated object
is given and the segmentation is completed using hysteresis
thresholding (“Case B”), the accuracy of the proposed and
the comparison method were 0.729 and 0.665, respectively.
This means, that the impact of the segmentation accuracy
based on hysteresis thresholding is lower than that of the
manipulated object identification accuracy. However, one
restriction of the hysteresis thresholding based segmentation
is that we need to determine empirically an appropriate
threshold to improve its performance. As the speed of doing
the assembly task changes depending on the type of task,
the workspace, etc., it is hard to generalized. Therefore, a
method to automatically determine this threshold or a feature
that do not depends on speed is necessary to carry out
a robust segmentation. When both the object identification
and the segmentation information is given from the Ground
Truth data (“Case C”), the accuracy of the proposed motion
recognition method was 0.823 and that of the comparison
method was 0.760.

Nevertheless, in any of the presented cases, the pro-
posed method had a better performance that the comparison
method. This means that narrowing down the candidate mo-
tions based on the action relationship between manipulated
object and motion, contributes to the improvement of the
motion recognition performance.

Finally, regarding the average accuracy per motion overall
motion types, it can be seen that is significantly lower than
the overall accuracy. This is partially due to the unbalanced
duration of some motions, i.e. pick motions are very short in
comparison with screw or insert. This means, the data used
(feature) to compute the likelihood of the HMMs is few,
increasing the probability of failing to correctly recognize
the picking motion.

IV. CONCLUSIONS

In this work, we proposed a framework for the automatic
motion segmentation and recognition of assembly tasks done
by humans. First, we described how to obtain the human’s
pose and the assembly parts and tools positions through a
sequence of images (video) using OpenPose and YOLO.
From the obtained pose, we extract the joint’s angles of the
human’s thumb, index and middle fingers as well as the wrist
velocity and the width between fingers. We trained one HMM
per pair of object-action based on the data of two subjects.
We evaluated the proposed method using the motion data of
five subjects assembling an airplane toy. The experimental
results showed that the performance of the proposed method
based on action relationships is better than when we only
use motion data.

In the future, we would like to:

• improve the accuracy of the manipulated object iden-
tification method by introducing a pressure sensor on
the human’s finger tip or by extracting an appropriate
motion feature;

• contemplate a method where the segmentation threshold
is automatically determine or not needed;

• improve the recognition performance by using feature
selection;

• use a different machine learning method for motion
recognition (e.g. deep learning) and compare results;

among others. Then, we would like to go on and apply our
method for the robot motion generation of assembly tasks.
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