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Abstract. In this research, we propose a novel error identification method dur-

ing robotic snap assembly aiming at automated recovery from error states. In

the proposed method, we first obtain the feature quantities of force/torque from

the simulated snap assembly by using functional principal component analy-

sis(fPCA). Then, we cluster these data into success and several different error

states based on the k-means clustering by using the decision tree considering

the multi-dimensional feature of the force/torque signal. Furthermore, we try to

predict an error state of a snap assembly task before the error actually happens.

Finally, we show simulation results to show the effectiveness of the proposed

method.
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1 Introduction

In recent years, the robotic assembly has been introduced to production processes. How-

ever, some complicated assembly tasks remain difficult for robots to perform. Among

such difficult assembly tasks, we focus on the so-called ”snap assembly” including parts

fitting of snap joints. Performing the snap assembly is difficult due to the following two

reasons. First, since the parts are usually made of plastics, we have to carefully treat the

parts to avoid the robot to break the parts especially when the assembly fails. Secondly,

it is extremely difficult to disassemble the parts with snap joints. Hence, it becomes

crucial to predicting the error states before the error actually happens. Moreover, if the

robot is to retry the assembly of parts, it becomes important to identify the error state

rather than just discriminating failure cases from the successful cases of assembly. Fig.

1(a),· · · ,(e) show the overview of a snap assembly task and two typical failure patterns

where the snap assembly failed due to the offsets in the initial pose of the parts.

Although identification of error states in the snap assembly has been researched

([1][2][3][4][5][6][7][8][9][10]), those methods can identify the error states only after

finishing the assembly task and cannot identify the error states in the middle of an

assembly task. To cope with the above problem in the snap assembly, we propose an

identification method of error states in the middle of an assembly task.

Our proposed method has two distinctive features. The first is considering the six-

dimensional feature of the force/torque information. Among six-dimensional force/torque

information, only a few components mainly affect the error states in most of the cases.
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(a) Before fitting parts (b) After fitting parts
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(c) Zoomed view of snap joints
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(d) Failure pattern 1
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(e) Failure pattern 2

��

��

��

��

�

�

�

�

�

��� ��� �	� �
� 
� 	� �� ��

�������
�		��
�

�������
�		��
�

(f) Result of clustering of one

of the force/torque component

data and a transition of failure

pattern1

Fig. 1. Overview of a snap assembly task, its two typical failure patterns, cluster, and its transition

in the feature space

Moreover, the components including necessary information to classify the error states

depend on the error states (Fig. 1(f)). Taking this problem into account, our method tries

to find such components by using a decision tree of the force/torque components.

Secondly, our method tries to predict the error states before the error actually hap-

pens. We define the feature quantity used to classify the error states by using the scores

of the functional principal component analysis (fPCA) of the force/torque data. Then,

the error states are classified by using the k-means clustering method. To identify the

error state in the middle of an assembly task, we consider using the force/torque data

between the initial time and the middle time of an assembly task. We will check how

this middle time can be set far from the end time (Fig. 1(f)).

In addition, to easily collect enough number of training data, we construct a physics

simulator of robotic snap assembly.

In this paper, we introduce related researches on error identification in the robotic

snap assembly in Section 2. Then, we explain the proposed method in Section 3. To

show the effectiveness of the proposed method, we show the results of numerical simu-

lation in Section 4.

2 Related Works

There have been several works on identifying the success and failure of robotic assem-

bly tasks([1][2][3][4][5][6][7]). For example, Rodriguez et al. [1] identified the result of

assembly task by using SVM and PCA. On the other hand, the number of researches on

robotic assembly identifying the error states is not large([8][9][10]). Rojas et al. [8][10]

proposed an identification method of the error states in cantilever-type snap assembly

tasks. Enrico Di Lello et al. [9] used the Bayesian-sequential model for identifying.

However, the above methods cannot identify the error states before the error actually

happens.
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(a)Simulated snap assembly
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(b)Real snap assembly

Fig. 2. Comparison between simulated and real snap assembly environments

3 Proposed Method

Our proposed method consists of three steps for building the classifier of the error states

and a single step for its verification. For building the classifier, we first collect the train-

ing data through physics simulation. Secondly, we extract feature quantities from these

data. We thirdly classify those feature quantities. To verify the classifier, we use fea-

ture quantities obtained from the force/torque data starting from the initial state to the

middle of assembly tasks.

3.1 Training Data Collection

We collect six-dimensional time trajectories of force/torque data from simulated snap

assembly [11]. We show the environment for simulated assembly in Fig. 2 in compari-

son with the actual assembly environment. To avoid excessive force applied to the parts

during tasks, we attach a spring unit at the wrist as shown in the Fig. 2. We assume six-

axis force/torque sensor attached at the wrist. To collect the training data, the part held

by a gripper moves in the −z direction with changing the offset of the fitted part’s initial

pose. Let ∆x, ∆y and ∆θ be the offsets of the fitted part’s initial pose of the translation in

x direction, translation in y direction and rotation about z-axis, respectively. Proposed

method tries to classify the error states according to the signature of ∆x, ∆y and ∆θ.

3.2 Feature Quantity Extraction

So as to identify the error states before the error actually happens, we define the feature

quantities by considering the functional principal component analysis(fPCA) [12][13][14]

to the 6-dimensional waveform data obtained from the force/torque sensor. For the j-th

component of the foce/torque data fi j(t) obtained during the i-th trial of assembly task

(i = 1, · · · ,N, j = 1, · · · , 6), the k-th principal function ξ jk(s) (k = 1, · · · , p) is obtained

by solving the following eigen value problem:

∫
v(s, t)ξ jk(s)dt = ρ jkξ jk(t) (1)

v(s, t) =
1

N

N∑
i=1

( fi j(s) − f̄ (s))( fi j(t) − f̄ (t)) (2)
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(a)Assembly simulation with ∆y = 5[mm] (b)Assembly simulation with ∆y = −5[mm]
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(f) Torque about x-axis with ∆y = −5[mm]

Fig. 3. Waveforms of torque about the x-axis and y-axis corresponding to different error states

where v(s, t) denotes the covariance function. In the above equations, the principal func-

tions ξ jk(s), k = 1, · · · , p are sorted by the eigen value ρ jk. The feature vector can be

obtained from the principal functions as scores of the functional principal component

analysis. We set p = 2 in this research.

3.3 Classifier Construction

In this subsection, we consider constructing the classifier of error states. Fig. 3 shows an

example of the torque data during snap assembly simulations with assuming the offsets

∆y = ±5[mm]. Among two results of assembly simulations with different offsets in the

y direction, the waveform data of the torque about the x-axis are apparently different

while the waveform data of the torque about the y-axis are almost same. We can find

that, depending on the error state, the component of force/torque affecting the error state

is different. Hence, to classify the error states, it’s important to find the force/torque

component affecting the error states. Our method firstly prepares a set of force/torque

data labeled as success or one of the error states. By using the k-means clustering, the

proposed method constructs a decision tree classifying given force/torque data as the

success or one of the error states. The classifier is constructed by using Algorithm 1.

We now briefly explain Algorithm 1. In Step 1, we consider classifying the snap

assembly as the success/failure cases. Assuming C = 2, we apply the k-means cluster-

ing for each force/torque component of fPCA score sets. We then find a force/torque

component well classifying the success/failure cases. In Step 2, we try to find both the

number of clusters and a force/torque component well discriminating error states. We

terminate the algorithm if all the error states are completely discriminated(Algorithm 1,

line19).
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Algorithm 1: Classifier construction based on k-means clustering

Data: fPCA scores and success/failure states

Success pattern index: i ← 0

Failure pattern index: i ← 1, · · · , F

Force/torque component: j ← 1, · · · , 6

Index of waveform data: k ← 1, · · · ,N(i)

Waveform data: WD(i, j, k)

Number of clusters used in k-means: C

Result: Construction of a decision tree for classification

begin1

Step1 classify success/failure cases2

id ← 03

node(id).pattern id ← [0, 1, · · · , F]4

for j ← 1, · · · , 6 do5

cluster( j, 2) ← k-means(fPCAScore(WD(i, j, k)),C ← 2),i ← 0, · · · , F6

accuracy( j, 2) ← calcAccuracy(cluster( j, 2))7

node(id).component ← argmax(accuracy( j, 2))8

node(id).cluster ← 29

node(id).children ← [id + 1, id + 2]10

node(id + 1).pattern id ← [0]11

node(id + 2).pattern id ← [1, · · · , F]12

Step2 classify failure patterns13

id ← 214

max id ← 215

while 1 do16

if size(node(id).pattern id == 1) then17

if id == max id then18

return node19

id ← id + 120

continue21

for j ← 1, · · · , 6 do22

for C ← 2, · · · , 5 do23

cluster( j,C) ←24

k-means(fPCAScore(WD(i, j, k)),C),i ← node(id).pattern id

accuracy( j,C) ← calcAccuracy(cluster( j,C))25

node(id).component ← argmax1≦j≦6(accuracy( j,C))26

node(id).cluster ← argmax2≦C≦5(accuracy( j,C))27

node(id).children ← [max id + 1, · · · ,max id + node(id).cluster]28

for i ← 1, · · · , node(id).cluster do29

node(max id + i).pattern id ← i − thClassified ids30

max id ← max id + node(id).cluster31

id ← id + 132

end33

3.4 Identification of error states during an assembly tasks

In this subsection, we consider identifying the error state before the error actually hap-

pens. We identify the error state by using time trajectories of force/torque starting from
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(a)∆y = 0.1[mm]
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(b)∆θ = 1[◦]
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(c)∆y ≥ 0.2[mm]
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(d)∆y ≤ −0.2[mm]
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(e)∆θ ≥ 3[◦]
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(f)∆θ ≤ −3[◦]
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(g)∆y = 0.3[mm]

∆θ = 0∼3[◦]
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(h)∆y = 0.3[mm]

∆θ = −3∼0[◦]
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(i)∆y = −0.3[mm]

∆θ = 0∼3[◦]
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(j)∆y = −0.3[mm]

∆θ = −3∼0[◦]

Fig. 4. Waveforms of torque about the z-axis

the initial time t0 to the ending at the time tclassi f y at the middle of an assembly task.

Identification can be done by using the decision tree obtained by using Algorithm 1.

We can expect that, if the waveform data ends close to the final state, identification is

expected to be accurate. On the other hand, if the waveform data ends far from the fi-

nal state, identification can be performed before the error actually happens with high

possibility.

4 Simulation Results

We collected the training data of the simulated snap assembly. Given various offset

patterns (45 patterns) including the translation in y direction and the rotation about z-

axis, we simulated snap assemblies and observed the error states. When the offset is

one of the following eight patterns, we confirmed that the assembly task failed: (1)∆y ≥

0.2[mm], (2)∆y ≤ −0.2[mm], (3)∆θ ≥ 3[◦], (4)∆θ ≤ 3[◦], (5)∆y = 3[mm] ∆θ = 0∼3[◦],

(6)∆y = 3[mm] ∆θ = −3∼0[◦], (7)∆y = −3[mm] ∆θ = 0∼3[◦] and (8)∆y = −3[mm]

∆θ = −3∼0[◦].

By using these training data, we constructed the classifier and confirm how accu-

rately the classifier can predict the error states.

Fig. 4 shows the waveforms of the simulated torque component about the z-axis.

Figs. 5 and 6 show the snapshots of assembly tasks for a successful case (∆y = 0.1[mm])

and a failure case (∆y = 0.8[mm]), respectively.

We can see from Fig. 4 that different offset patterns have different waveforms of

force/torque. Hence, we can expect to predict the error states by using our proposed

method.
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(a) (b) (c)

Fig. 5. Successful case of assembly when ∆y = 0.1[mm]

(a) (b) (c)

Fig. 6. Failure case of assembly when ∆y = 0.8[mm]

4.1 Feature Quantity Extraction

We show scores up to the second principal component score in Fig. 7 since more than

90 % of contribution ratio is realized by using up to the second principal component

function.
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(a)Force in x direction
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(b)Force in y direction
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(c)Force in z direction
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(d)Torque about x-axis
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(e)Torque about y-axis
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(f)Torque about z-axis

Fig. 7. Plots of principal component scores where the red ©, the blue ©, the yellow △, the green

△ and the black △ denote ∆y = −0.8∼−0.2[mm], 0.2∼0.8[mm], ∆y = −0.15∼0.15[mm], ∆θ =

−4∼4[◦], ∆y = 0.3[mm], ∆θ = −4∼4[◦] and ∆y = −0.3[mm], ∆θ = −4∼4[◦], respectively.

4.2 Classifier

We classified the error states by applying the k-means clustering based on Algorithm 1.

Decision tree obtained from Algorithm 1 is shown in Fig. 8.
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Fig. 8. Decision tree for classifying error states
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(a)Force in z direction
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(b)Torque about y-axis
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(c)Force in y direction
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(d)Torque about

z-axis(1)
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(e)Torque about

z-axis(2)
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(f)Torque about

z-axis(3)
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(g)Torque about x-axis

Fig. 9. Result of clustering

4.3 Identification during assembly task

We identify error states by using the obtained decision tree. We perform the simu-

lated snap assembly assuming following offset patterns: (1)∆y = 0.075[mm], (2)∆y =

0.2[mm], (3)∆y = −0.85[mm], (4)∆θ = 0.5[◦], (5)∆θ = 5[◦], (6)∆θ = −3[◦] and

(7)∆y = 0.2[mm] and ∆θ = −3[◦]. We labeled the force/torque data of assemblies as

’S uccess’ and Fail1 : ∆y > 0, Fail2 : ∆y < 0, Fail3 : ∆θ > 0, (6)Fail4 : ∆θ < 0 and

Fail5 : ∆y > 0 ∆θ < 0.

By changing the time tclassi f y from tclassi f y = 3.375[s] to tclassi f y = 2[s], we ex-

tracted feature quantity vectors. And we identify the error states by using the decision

tree shown in Fig. 8. Results of identification are shown in Figs. 10, · · · , 12 where yel-

low square and black rhombus denote the feature quantity vectors with changing from

tclassi f y = 3.375[s] to 2.5[s] and that changin from tclassi f y = 2.5[s] to 2[s], respectively.

In Fig. 10, every feature quantity vector is always included in the cluster labeled as

S uccess after tclassi f y = 2[s]. In Fig. 11, every feature quantity vector is always included

in the same cluster of failure states after tclassi f y = 2[s] and we got same results in the
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cases of data(5) and (7). However, in Fig. 12, the classifier could identify the error state

correctly from tclassi f y = 3.375[s] to 2.5[s], but it could not identify correctly from

tclassi f y = 2.5[s] to 2[s] and we got same result in the case of data(6). It implies that we

have to set tclassi f y = 2.5[s] to correctly identify the success and error states.
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����

��

����

����

����

����

�

���

���

���

�� �� � � � 	

�
�
�

���

(b) Force in z direction of data(4)

Fig. 10. Results of identification at the middle of assembly tasks about force/torque data(1) and

(4)
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(a)Force in z direction
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(b) Torque about y-axis
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(c) Torque about z-axis
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(d) Torque about x-axis

Fig. 11. Result of Identification at the middle of assembly task about force/torque data(3)
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(a) Force in z direction
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(b) Torque about y-axis

���

��

��

��

��

�

�

�

�

�

��

��� ��� ��� ��� � �� �� �� ��

�
�
�

���

(c) Torque about z-axis
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(d) Torque about x-axis

Fig. 12. Result of misidentification at the middle of assembly task about force/torque data(2)

5 Colclusions

In this paper, we proposed an error identification method including several failure pat-

terns during robotic snap assembly. In the proposed method, we gather waveform data

from simulated snap assemblies at various offsets and extract functional principal com-

ponent scores as feature quantity vectors by using fPCA. Then, we classify success/failure

patterns by using phased k-means clustering. And we predict the failure of assembly

and detail failure patterns by comparing learned clusters and feature quantity vectors

extracted from waveforms obtained from the beginning of the assembly to the middle
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of it. Numerical simulation showed that every given unknown success/failure pattern

waveform data could be identified correctly during assemblies. We consider the error

recovery motion after identifying success/failure patterns as a future research.
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