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ABSTRACT
This paper proposes a real-time walking pattern generator (WPG) based on model
predictive control (MPC). Since reducing the calculation time is a crucial problem
in real-time WPG, we consider introducing basis functions to reduce the number of
control input. The control inputs in the MPC are described by a series of basis func-
tions. Compared with the standard discrete-time MPC formulation, the approach
with basis functions requires fewer optimization variables at the cost of decreasing
precision. In order to find an appropriate trade-off, two basis functions named La-
guerre functions and Haar functions, are tested in this paper. MPC with Laguerre
functions decreases more computational load while MPC with Haar functions offers
a more accurate solution. The approach is not restricted to Laguerre functions or
Haar functions, users can select their own basis functions for different applications
and preferences.
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1. Introduction

Humanoid robots are promising candidates for a broad variety of applications, for
example, disaster relief, industrial labor and domestic assistance [1]. Advanced motion
controllers are now closer to realtime feasibility, but they require powerful multi-core
CPUs. Specially, the bipedal nature of humanoids requires footstep planning which
is computationally expensive and in realtime cases, the sensor information should
be managed in the meantime. Therefore, to improve humanoids’ locomotion, it is
important to have a fast online walking pattern generator(WPG).

In realtime walking motion generation, Linear Inverted Pendulum Model (LIPM)
has been used in many studies [2–4]. By using LIPM, an extension of linear quadratic
regulator control by preview control is used for a closed loop approach to address
the problem of bipedal walking pattern generation [5]. Harada et al.[6] generated a
realtime biped gait using an analytical solution. However, these methods calculate the
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walking pattern one walking step in advance. Morisawa et al. [7] proposed an analytical
solution based WPG which can maintain balance against disturbance. Nishiwaki et al.
[8] proposed a preview control based realtime WPG which calculation cycle is about
10 to 40ms. A method of combining Gauss Pseudospectral with preview control based
WPG is tested on HRP-2 [9].

Englsberger et al. [10] proposed the control of the unstable dynamics of capture
point (CP) and extended the CP to a 3 dimensional divergent component of motion
(DCM) [11]. However, it is difficult to add constraints for the center of pressure (CoP)
in their design. The utilization of MPC allows the incorporation of CoP constraints
in the controller design [12]. Romualdi et al. [13] compared the walking performance
of DCM based on MPC with that of DCM based on instantaneous controller [10].
The CoP trajectory generated by MPC is smoother while the instantaneous controller
achieved a faster walking velocity.

There are a lot of attempts in WPG including several constraint conditions such
as CoP. For realizing such purposes, MPC based WPG was proposed and has been
proven to be successful [14,15]. It has also been extended to have abilities such as
obstacle avoidance [16] and disturbance rejection [17].

Reducing the calculation time in realtime WPG is important, since there are compu-
tational loads from analysis of sensor data. Few attempts have been tried on reducing
the calculation time of MPC based realtime walking pattern generator. In order to
have a faster online WPG, we go further and propose reformulating the control signals
of the MPC using basis functions, as illustrated in Figure 1.

Figure 1. In (a), the figure shows two frames Ϛ,z, representing CoM and the supporting foot respectively.

Figure (b) shows the control input in MPC based WPG and two extreme values. In order to improve compu-
tational efficiency, we use Haar(left part in (c)) or Laguerre(right part in (c)) basis functions to reformulate
the control signal.

Decreasing the number of control inputs is a solution to improve efficiency in the
MPC [18,19]. In the conventional discrete time MPC [14,15], the control signal can
be considered as a combination of pulse basis functions. To cover the whole time
horizon(Np), the number of basis functions required is Np. In this paper, we propose
applying Haar and Laguerre basis functions to approximate the control signal. Since
Haar and Laguerre functions carry more information than pulse functions, fewer basis
functions are needed for representing the input, leading to a reduction in the number of
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control inputs. Furthermore, Haar and Laguerre functions specially suit the property
of inputs in WPG. The control signal in Figure 1 might be difficult to approximate
due to their sharp changes. However, Haar functions can naturally represent the lows
while Laguerre functions are embedded with a tuning parameter which modifies them
to fit the desired signal.

Basis functions are not new and have been already treated in several works [20–23],
where the control signal is represented by a set of basis functions, for example, La-
guerre, Kauz and Haar. It provides a more compact problem description with fewer
control variables, which leads to computational benefits. Haar functions are used to
build a transformation matrix which changes the signal from time domain into wavelet
domain. This transformation decomposes signals into several different frequency com-
ponents without destroying their time domain structures [24]. Laguerre functions have
been applied to the identification of linear time invariant systems for a long time [25].
In system identification, the purpose of implementing Laguerre functions is to get low
order models and to incorporate a priori information to the system’s time constants.

The main contribution of this paper is a basis function approach to the MPC based
WPG. The method is a parametric description of the MPC’s control inputs via linear
combinations of basis functions. Moreover, instead of restricting to special types of
basis functions, we provide a general parametrization approach which allows users
to select their own basis function. To fit the property of bipedal walking, Haar and
Laguerre functions are introduced. Examples of two MPC designed with these different
basis functions are shown and compared.

This paper is organized as follows: Section 2 introduces the dynamic walking mo-
tion for both the bipedal’s body and feet. Section 3 discusses the MPC scheme. Cost
function and constraints are discussed in this part. Then, the properties of walking
motion are analysed in Section 4. The Laguerre and Haar basis functions and its use
are proposed in Section 5. Finally the conclusion and future work are introduced.

2. Dynamic Walking Motion

2.1. Motion Model of Center of Mass (CoM)

In Figure 1, a frame Ϛ is attached to the position of the CoM and to the orientation
of the robot’s trunk. The orientation θ is around vertical axis Z in the frame. In
order to generate a smooth motion of the CoM, we consider that its trajectory is
differentiable three times. The jerks are assumed to be piece-wise linear on the time
intervals T = 0.1s. We define the superscript C which implies the states on the CoM.
C ∈ {cx, cy} indicates the axes of the horizontal plane in the frame Ϛ, the future states

x̂Ck+1 =
[
xCk+1 ẋCk+1 ẍCk+1

]T
(including the CoM’s position, velocity and acceleration)

can be generated by,

x̂Ck+1 = Ax̂Ck +B
...
xCk , (1)

where

A =

 1 T T 2/2
0 1 T
0 0 1

 , B =

 T 3/6
T 2/2
T

 ,
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Eq. (1) is the motion model of the CoM. The real motion of the CoM will be set to
follow the motion model of the CoM. To define the CoM over the prediction horizon
Np, the vector XC

k+1 is used to express the positions of the CoM over the whole horizon,

XC
k+1 =

[
xCk+1 · · · xCk+Np

]T
, similar definitions are used to describe ẊC

k+1, ẌC
k+1 and

...
X
C
k+1. Prediction horizon (Np) indicates the length of state variables XC

k .

By defining the state X̂c
k+1 =

[
XC
k+1 ẊC

k+1 ẌC
k+1

]T
, and the control input UCk =

...
XC
k of the following state equation, we obtain the prediction model of the CoM,

X̂C
k+1 = AcX̂

C
k +BcU

C
k , (2)

where matrices Ac, Bc can be obtained from the recursive application of Eq. (1).
To distinguish the prediction horizon Np, the length of control input UCk is defined

as control horizon Nc. This is because the control horizon can be reduced by basis
functions while the prediction horizon is always kept with same value.

The orientation of the CoM, XCθ in frame Ϛ can be calculated with a similar
prediction form of Eq. (2) (see [15] for more details).

2.2. Motion of the Center of Pressure (CoP)

Assuming that the centroidal dynamic [26] which is the dynamic of a humanoid robot
projected at its CoM is linear (the angular momentum produced by the rotations of
the robot is supposed to be zero and the CoM evolves on a horizontal plane [16]) when
all the contacts with the environment are coplanar, the CoP should strictly lie in the
support polygon in order to meet the balance criteria. The positions of CoP, yC , can
be approximated by LIPM. The CoP is predicted by a linear function of the CoM,

yCk+1 = Cx̂Ck+1 (3)

where C =
[
1 0 −h/g

]
, h and g are the height of the CoM and the norm of the

gravity vector, respectively.
The vector of the CoP over the prediction horizon is defined as Y C

k+1 =[
yCk+1 · · · yCk+Np

]T
, thus we have

Y C
k+1 = CcX̂

C
k+1 (4)

where matrix Cc is a collection of C in Eq. (3).

2.3. Motion of Foot

Consider that a frame z is attached to the current support foot (see Figure 1) , in
this case xFk with superscript F indicates the current state of the foot. F ∈ {fx, fy, fθ}
shows the position of the foot’s center in X, Y direction and the angle between the
foot’s orientation and X axis. Position and orientation of the foot are shown in Fig-
ure 2. The future steps XF

k+1 representing the states of the foot at each time step are

denoted by XF
k+1 =

[
xFk+1 · · · xFk+Np

]T
.
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The future steps XF
k+1 can be calculated by the current step xFk and the control

input UFk ,

XF
k+1 = Afx

F
k +BfU

F
k , (5)

where Af , Bf are coefficient matrices indicating which step is active in the sampling
interval (see [15] for details).

Figure 2. pi on the edge of the feet indicates the support polygon and θ denotes orientation.

In order for the motion to be feasible and stable, the CoP is constrained to be
inside the support polygon. The position of the feet is supposed to be directly below
the ankles. To cope with Eq. (4), the positions of the feet Y F

k are defined as,

Y F
k = IXF

k (6)

where I is the identity matrix.

3. Model Predictive Control

3.1. Walking Pattern Generator

Walking motions can be produced by following a reference velocity. The reference

velocity V elrefk+1 =
[
V elx,refk+1 V ely,refk+1 V elθ,refk+1

]T
that describes velocities in X and Y

directions and the yaw velocity of the waist in Figure 1, is provided to the WPG, which
computes the foot steps and CoM jerks. Then, the CoM trajectory is determined from
its jerks and the trajectories of feet are generated from the foot steps positions found
by the MPC. In the next sampling time, the WPG is reinitialized with the current
targeted velocity and with the updated states from the dynamic motion generator
which transforms the given path into a dynamically executable robot trajectory.

3.2. Position Tracking

We define the control input for position control as Ux,yk =
[
U cxk Ufxk U

cy
k U

fy
k

]T
.

U cxk and U
cy
k are from UCk in Eq. (2), with superscript C ∈ {cx, cy} indicating the

control input for the CoM. Ufxk and U
fy
k are from UFk in Eq. (5) where superscript

F ∈ {fx, fy, fθ} indicates the control input of the foot.
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To optimize the cost function related to position tracking, we defined

min
Ux,yk

α

2
(||ẋcxk+1 − V el

x,ref
k+1 ||

2 + ||ẋcyk+1 − V el
y,ref
k+1 ||

2)+

β

2
(||Y fx

k+1 − Y
cx
k+1||

2 + ||Y fy
k+1 − Y

cy
k+1||

2)+

γ

2
(||

...
U
cx
k+1||

2 + ||
...
U
cy
k+1||

2)

(7)

where α, β, γ are weights. The optimization problem firstly compares the linear veloc-
ity, secondly it generates the CoP (Y cx

k+1, Y
cy
k+1) using Eq. (4) tracks the feet positions

(Y fx
k+1, Y

fy
k+1) generated by Eq. (6) which ensures balance, thirdly it minimizes the jerks

in order to get a smooth motion of the robot.
The optimization problem of Eq. (7) can be expressed in a canonical form

min
Ux,yk

1

2
Ux,yk

T
QkU

x,y
k + pk

TUx,yk , (8)

where the Qk matrix and pk matrix are as defined in [15]. The control horizon Nc is
equal to the length of the control input Ux,yk .

When solving this kind of Quadratic Programming(QP) problem (Eq. (8)), the
length of the control horizon and the structures of Qk, pk have a significant influence
on the computational load. In this paper, Haar and Laguerre basis functions will

be implemented to approximate control inputs UCxk , U
Cy
k in Ux,yk , so that a new QP

problem, with control inputs of fewer dimensions, is built.

3.3. Orientation Tracking

Let us assume that the yaw motion of the robot’s waist can be written using the same
linear dynamic forms given in Eq. (2, 4) and define the control input for orientation
as U θk . As rotation of the robot’s posture is related to both the waist and feet, here
we consider that the orientation of the feet are aligned with the waist most of the
time. We can determine the orientations of the feet by solving the following objective
function,

min
Uθk

α

2
||ẋcθk+1 − V el

θ,ref
k+1 ||

2 +
β

2

∣∣∣∣∑
k

(ẋfθk+1 − V el
θ,ref
k+1 )

∣∣∣∣2. (9)

where ẋcθk+1 indicates the changing of yaw angle in the waist and ẋfθk+1 shows the
changing of orientation in the foot. The objective function lets the waist trace the
targeted orientation and also considers the angle between the waist and the feet. In
the same way as the position controller, the input U θk can also be represented by a set
of basis functions.

3.4. Constraints

The balance of humanoids should be ensured and the feasibility of the foot step needs
to be verified. Constraints are introduced to achieve a safe and feasible walking.
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3.4.1. Balance Constraints

Constraints should be added to ensure balance while walking, which is determined by
the CoP. To achieve a balanced bipedal walking, the CoP must stay in the support
polygon. Only single support phase is considered and the CoP stays in the support
polygon when it satisfies,

Acop,k(U
θ
k )Ux,yk ≤ Ucop,k (10)

where Ucop,k is the upper bound column vector. Eq.(10) indicates that the i-th element

in the left vector is smaller than the i-th element in Ucop,k. Detailed explanations of
the CoP constraints can be found in [16]. Acop(U

θ
k ) is a matrix depending on U θk which

makes this constraint non-linear.
However, the non-linear issue can be avoided if U θk is pre-calculated[15]. To keep

the linear form of QP, the orientations problem will be calculated prior to the position
controller based on Eq.(8).

3.4.2. Feasibility Constraints

It is also necessary to set constraints to ensure the movements of the feet computed by
the WPG are feasible with respect to joint angles, velocity limitations, self-collision,
over-stretching avoidance and kinematic limitations. The same convex hulls as in [16]
are used to describe the feet limitations and the swing foot has to land inside the
convex hull, i.e.

Afoot,k(U
θ
k )Ux,yk ≤ Ufoot,k. (11)

4. Properties of Control Signal

Unlike conventional MPC [14,15], we use basis functions to approximate control input

UCk in Eq. (2). The physical meaning of control input are jerks of the CoM,
...
XC
k which

can be separated into two directions
...
Xcx
k ,

...
X
cy
k on X,Y axis. Before reformulation of

the jerk, let us have a look at velocity and acceleration of the CoM.

4.1. Linear Inverted Pendulum Model

The WPG is based on a 3D LIPM. In Figure 3(b), the walking motion of the LIPM
is separated into single support (SS) phase and double support (DS) period. With
Np(= 16) time intervals (0.1s), the time horizon of prediction is 1.6s. The full duration
of one step is 0.8s, including single support (0.7s) and double support (0.1s). Two steps
are predicted in a prediction horizon. Figure 4 shows the velocity and acceleration of
the robot in X direction during a horizon. Small fluctuations happen in SS at 0 ∼ 0.2s
and 0.8s∼1.0s, these are related to the dynamic of the LIPM. During the DS period
(t = 0.6s and 1.4s), the acceleration jumps from maximum to minimum and the CoP
moves from the backward support foot to the forward one, see Figure 3(b).
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(a) The yellow marks indicate the

support feet in SS before and after
the DS period.

(b) A full step includes SS and DS.

Figure 3. During DS period, the CoP moves from one foot to the other.

Figure 4. Detailed information about the velocity and acceleration of the robot in X direction during a

prediction horizon. At the time periods 0.5s∼ 0.6s and 1.3s∼ 1.4s, the acceleration jumps from maximum to
minimum.

4.2. The jerks

The changes of acceleration in DS require a big jerk as shown in Figure 5. Unlike the
conventional MPC, we use basis functions to approximate control inputs UCk which are

the jerks of CoM,
...
XC
k . However, two deep lows in the jerk make the control input hard

to be represented. To solve this problem, we introduce Haar functions and Laguerre
functions which are able to represent this kind of signal.

As depicted in Figure 5, jerks along X and Y axis have peaks. The jerk along the
Y axis is more difficult to catch as it changes sign due to the feet transition.

5. Approximation with Basis Functions

In the conventional discrete time MPC [14,15], the control input
...
XC
k in Figure 5 is

represented by a series of pulse basis functions. In pulse basis functions, as shown in
Figure 6, information is carried at certain sampling time. In order to cover the whole
time horizon(Np = 16), the number of pulse functions required is Np. The length of the
control input is the number of basis functions, which is Nc = 16. To reduce the number
of basis functions, Haar basis functions and Laguerre basis functions are implemented
to approximate the control input of the MPC.
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(a) Along X direction, the jerk has two deep

lows at t = 0.6, 1.4s.

(b) Along Y direction, the jerk has a peak and

a low at t = 0.6, 1.4s.

Figure 5. The velocity, acceleration and jerks of CoM along X and Y directions. Extreme values of jerks
happened in the DS phase.

There are two reasons for applying Laguerre and Haar functions. Firstly, both a sin-
gle Laguerre function (in Figure 7) and a single Haar function (in Figure 8) carry more
information compared with pulse functions. As a result, to represent the same control
signal, fewer number of basis functions are needed which also means the dimension of
the control input is reduced. Secondly, Haar and Laguerre functions specially suit the
property of the WPG’s control input. From Figure 5, it can be seen that two extreme
values (at t = 0.6s and 1.4s) appear in the control input due to the LIPM and such
a sharp change makes it hard for basis functions to approximate the control input.
However, Haar functions can naturally represent the values and steep changes in in-
puts. Laguerre functions are embedded with a tuning parameter a which can modify
the shape of Laguerre functions to fit the property of the desired signal. Details of
Haar functions and Laguerre functions are discussed in this Section.

5.1. Input in Conventional MPC

Before introducing Laguerre functions, let us recall the control inputs of the MPC
from Eq. (2) and express them in the time horizon.

UCk =
[
uCk uCk+1 ... uCk+Nc−1

]T
(12)

The dimension of the control input is Nc which is the control horizon. At time k,
elements with UCk can be represented by the discrete δ functions combined with UCk ,

uCk+i =
[
δi δi+1 ... δi−Nc+1

]
UCk , (13)

where δi = 1, if the subscript i = 0; δi = 0 if i 6= 0. Here the δ functions are considered
as a pulse operator and the δi−d shifts the pulse forward as index d increases. Therefore,
the pulse functions (or step functions) are representing the control input if we take UCk
as the coefficient vector. Other thing that should be noted is that the input trajectories
uCk+i can also be approximated by a discrete time polynomial function.
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Figure 6. The control input of the MPC in discrete time can be considered as a combination of pulse functions

5.2. Laguerre Basis Functions

5.2.1. Constructions

The discrete time Laguerre functions are derived from the discretization of continuous-
time Laguerre functions [20]. In this paper, the state space form of Laguerre functions
will be implemented. Let the initial Laguerre function be:

L0 =
√

1− a2
[
1 −a a2 −a3 ... (−1)N−1aN−1

]T
, (14)

where a is the pole of the discrete time Laguerre function and 0 ≤ a < 1. N shows the

division of Laguerre vectors. Let, Lk =
[
l1k l2k ... lNk

]T
, then,

Lk+1 = AlLk, (15)

where the matrix Al(N ×N) is a function of a. For example, for N = 3,

Al =

 a 0 0√
1− a2 a 0

−a
√

1− a2
√

1− a2 a

 , L0 =
√

1− a2

 1
−a
a2

 (16)

Figure 7. An example of Laguerre functions in discrete time with a = 0.5

Laguerre functions are orthonormal functions, therefore it has the following prop-
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erty,

Np∑
k=0

likl
j
k = 0 for i 6= j,

Np∑
k=0

likl
j
k = 1 for i = j.

5.2.2. Control Inputs

At the beginning of this section, we mentioned that the control inputs in MPC are
represented by a set of pulse functions. Here, the Laguerre functions are used to
describe the control inputs:

uCk =

N∑
i=1

cilik. (17)

In a vector form,

UCk = LT
kCl, (18)

where

Cl =
[
c1 c2 ... cN

]T
and c are parameters which will be derived by solving the cost function.

If Laguerre functions are used to approximate the control inputs, the new control
inputs in Eq. (18) are Cl. Now the length of the control inputs is the number of
Laguerre functions used (N) while in the conventional MPC, the length of the control
inputs of Eq. (12) is Nc. As a single Laguerre function carries more information in
comparison with the pulse function, fewer number of Laguerre functions are required
to formulate the input, N < Nc. As a result, the length of the control input is shortened
and the computational load is also decreased.

5.2.3. Motion with Laguerre Functions

The MPC with Laguerre basis functions is closely related to the conventional MPC.
If we put Eq. (18) in Eq. (2) and Eq. (4), the future states of the CoM and feet can
be generated in the form of Laguerre functions as:

X̂C
k+Np = ANpc X̂C

k +

Np−1∑
i=0

ANp−i−1
c BcL

T
i Cl, (19)

Y C
k+Np = CcA

Np
c X̂C

k +

Np−1∑
i=0

CcA
Np−i−1
c BcL

T
i Cl. (20)
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5.2.4. Selection of Parameters

There are two explicit tuning parameters in the design of Laguerre functions which
are the pole of the discrete time Laguerre function a, and the number of Laguerre
functions, N . The parameter a determines the configuration of Laguerre functions. If
the control horizon Nc is known, a can be selected in the area near a ≈ exp(− kl

Nc
)

where kl is set between 5 to 10 according to the number of Laguerre functions that are
applied. However, for the MPC used in the WPG, it is recommended to select a small
value of a, due to the steep change of the control input that appears in the double
support phase. In order to guarantee feasible solutions, a small value of a is our first
choice.

The number of terms N indicates how many Laguerre functions are applied to
approximate the target. The complexity of the calculation is influenced by the choice
of N . As N increases, a better description of the target is provided while calculational
load is also added. A small value of N means a fast calculation however it may lead to
an unfeasible solution. At the beginning, N can be chosen with the same value as Nc

and then designers can reduce N until an acceptable balance between accuracy and
efficiency is achieved.

5.2.5. Notes

(1) Fast and steep changes (happened in double support phase) in the control inputs
can be handled with Laguerre polynomials.

(2) It is easy to tune the performance of the MPC with Laguerre functions as there
are two explicit parameters which are a and N .

(3) The MPC with Laguerre functions is the same as the traditional MPC when
a = 0 and N = Nc.

(4) The complexity of solving the cost function is reduced due to the reduction in
the length of control inputs.

5.3. Haar Basis Functions

Besides applying Laguerre basis functions, Haar basis functions can also be used to
represent the control input.

5.3.1. Construction

Let the initial Haar function h0 be the signal which assumes a constant value on the
unit interval [0,1) as follows:

h0 =
1

(
√

2)m
(21)

where m is an integer. From the point of view of signal representation, a large m
indicates smaller resolution and higher frequency.

A set of Haar wavelets are orthogonal functions defined as,

hm,k =
1

(
√

2)m
ψ

(
1

2m
t− k

)
(22)
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where k relates to the phase shift of the wavelets and ψ(t) is the indicator function

ψ(t) =


1 if t ∈ [0,

1

2
)

−1 if t ∈ [
1

2
, 1)

0 otherwise

(23)

Haar wavelets are orthogonal and square-integrable in `2 norm. The approximation
of the control input can be achieved by applying Haar series.

Figure 8. Haar basis functions.

5.3.2. Transformation from Pulse basis

The input signal is represented by a finite discrete form of Eq. (12), and it can be
expressed with Haar functions by

UCk =

2l−1∑
i=1

δ0,kφ0,k =

2l−m−1∑
k=0

l−1∑
m=1

cm,khm,k (24)

where δ, c are coefficients for pulse basis and Haar basis respectively, and φ is the
shifting pulse. Changing the input signal from the standard pulse function into the
Haar basis is a unitary transformation. The transformation matrix H is orthogonal,
HTH = I,

UCk = HTCh (25)

Ch = HUCk (26)

where UCk , Ch are the matrices of coefficients δ, c respectively. For example, if m = 2,


c0,0

c1,0

c2,0

c2,1

 =


1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

1√
2
− 1√

2
0 0

0 0 1√
2
− 1√

2



δ0,0

δ1,0

δ2,0

δ3,0

 (27)
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Figure 8 shows the Haar basis functions for h0, h1,0, {h2,k}k=0,1.

5.3.3. Blocking

Besides giving acceptable performances, a control algorithm should be computationally
efficient for inexpensive on-line implementation. Blocking is a strategy to reduce the
size of optimization problems. In this method, the number of vectors to be calculated
is decreased by projecting the vector space onto a lower subspace. As a result, the
insignificant linear combinations of the input are eliminated in the calculation. Let
the input vector after the blocking be UB and block matrix Bblk,

UB = BblkU (28)

Bblk is an orthogonal matrix and it is designed to eliminate some of the rows that
are related to the particular linear combinations of the input which are set to zero a
priori.

Figure 9. Jerks after transformation from time domain (Figure 5) to wavelet domain, where it is easier to

find zeros in the input that can be blocked.

Though blocking is an efficient way to reduce computational load, it is hard to ap-
ply blocking directly in MPC; since the proper choice of blocking matrix is usually
obscure in time domain. Here, we propose a general method to use the blocking ma-
trix, that is representing the control input in wavelet domain with Haar functions. In
Figure 9, wavelet transformation provides a new perspective to view the input, where
the blocking techniques can be implemented in an insightful and convenient way. As
the transformation from time domain to wavelet domain is a unity one, we do not loss
any information from the input. Therefore the accuracy is preserved.

Here is an example of blocking. Suppose the control input in wavelet domain is Uw
which has a dimension of 8,

Uw = [u0,0, u1,0, u2,0, u2,1, u3,0, u3,1, u3,2, u3,3]T (29)
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and blocking matrix Bblk is designed as

Bblk =



|1| 0 0 0
0 |1| 0 0
0 0 |1| 0
0 0 |0| 0
0 0 0 |1|
0 0 0 |0|
0 0 0 |0|
0 0 0 |0|


(30)

The variables after blocking, UB is calculated by Eq. (28),

UB = [u0,0, u1,0, u2,0, u3,0]T (31)

As a result, the length of the input vector is shortened from 8 to 4.

5.3.4. Motion with Haar Functions

If we put Eq. (25) in Eq. (2) and Eq. (4), the future states of the CoM and feet are
built in the form of Haar functions as

X̂C
k+Np = ANpc X̂C

k +

Np−1∑
i=0

ANp−i−1
c BcH

T
i Ch, (32)

Y C
k+Np = CcA

Np
c X̂C

k +

Np−1∑
i=0

CcA
Np−i−1
c BcH

T
i Ch, (33)

Blocking matrix can be added to eliminate part of the control input.

X̂C
k+Np = ANpc X̂C

k +

Np−1∑
i=0

ANp−i−1
c BcBblkH

T
i Ch, (34)

Y C
k+Np = CcA

Np
c X̂C

k +

Np−1∑
i=0

CcA
Np−i−1
c BcBblkH

T
i Ch, (35)

5.3.5. Notes

(1) The transformation of signals from time domain to wavelet domain is a unity
one. Thus information is kept when transforming the input from time to wavelet
domain.

(2) After transforming an input into wavelet domain, a blocking matrix can be
introduced to reduce the dimension of the input.

(3) The MPC with Haar functions is the same as the conventional MPC when block-
ing is not implemented.

15



(a) Patterns by conventional MPC

(b) Patterns by MPC with Haar functions (c) Patterns by MPC with Laguerre functions

Figure 10. Forward walking patterns. MPC with Haar functions generates the most accurate trajectory while
MPC with Laguerre functions runs faster.

Table 1. Walking forward with approximation of jerks of x.

Controller Dimension of input Errors Time(ms) Time saving

MPC 16 -4.7% 21.9 0
MPC with Haar 13 -0.2% 18.7 -14.6%
MPC with Laguerre 10 -7.5% 15.4 -29.7%

6. Simulation

In this section, the walking gaits produced by the conventional MPC [15], MPC with
Laguerre and Haar basis functions are compared. The walking pattern generator is
tested on the HRP-2 humanoid robot. A step is made regularly every 0.8s where 0.7s
for single support and 0.1s time duration for double support. The time of prediction
for all the MPC tested is set to 1.6s which means it predicts two full steps in the
future. Three walking strategies are tested which are walking forward, sidewalking
and walking with feet rotations. The humanoid robot starts walking with the right
foot, then tracks the targeting velocity and finally take 2s to reach a rest position,
which is a double support condition.

The robot walks forward with a velocity of V elrefk+1 =
[
0.2 0 0

]T
for 4s. The three

components in V elrefk+1 represent the CoM’s velocity along X, Y direction and angular
velocity along vertical axis respectively. At the beginning, the jerks of the CoM along
x axis UCxk are represented by basis functions. In Figure 10, all the MPC based WPGs
generated feasible trajectories.

From Table 1, it can be seen that the running time of the three controllers is different.
In the conventional MPC, computational cost is 21.9ms while the MPC with Haar
and the MPC with Laguerre save 14.6% and 29.7% of calculation time respectively,
in comparison with conventional MPC. The numbers of the control inputs UCxk in
the MPC, MPC with Haar and MPC with Laguerre are 16, 13, 10 respectively. The
reduction in the numbers of the control inputs leads to a faster calculation. The tuning
parameters of the MPC with Laguerre are, a = 0.3, N = 10.

Although the MPC with Haar does not work as fast as the MPC with Laguerre, it
provides the most accurate result among the three tested MPCs while the computa-
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Table 2. Walking forward with modification of jerks of y.

Controller Dimension of input Errors Time(ms) Time saving

MPC 16 -4.7% 21.9 0
MPC with Haar 12 -0.2% 22.3 +1.8%

Table 3. Sidewalking.

Controller Dimension of input Errors Time(ms) Time saving

MPC 16 -3.8% 18.2 0
MPC with Haar 5 -3.3% 10.2 -43.9%
MPC with Laguerre 1 -3.3% 8.2 -54.9%

tional cost is less compared with the conventional MPC.
In addition to operations on the jerk of x, UCxk , we then apply basis functions to

represent the jerk of y, U
Cy
k . However, in the case of implementing basis functions in

U
Cy
k , the MPC of Laguerre can not generate a feasible trajectory. The MPC with Haar

can produce stable foot trajectory (see Figure 11), but the running time of it, is higher
than that of conventional MPC, see Table 2.

Figure 11. Walking patterns generated by approximation of both jerks of x and y with Haar basis functions.

The reason for such performances is that there are both a peak and a low in the
jerk of y (see Figure 5), which makes it difficult for basis functions to approximate. In
order to design a fast and stable realtime WPG, only UCxk is represented with basis
functions.

In the case of sidewalking, see Figure 12, the MPCs with basis functions have a
huge improvement compared with traditional MPC. Table 3 shows that the reference
velocity is assigned to 0.2m/s and the running time of process is reduced by 43.9%
in the MPC with Haar and by 54.9% in the MPC with Laguerre functions. More
than half of the calculation time is saved when the Laguerre functions are used. The
reason of improvement in both MPC with basis functions is that when the robot walks
in y direction, the CoM’s trajectory along x axis does not change much. Therefore,
the control inputs along x direction can be greatly reduced and it results in a fast
calculation.

To demonstrate the behavior of the orientation controller, a constant velocity V ref
k+1 =

[0.2, 0, 0.2] including rotation, is sent to the walking pattern generator for 4s. Both the
position and the orientation controller are designed with basis functions. The setting
for the position controller with basis functions is the same as in the case of walking
forward. The control inputs, which are jerks along left and right direction, in the
orientation controller are approximated by basis functions.

Table 4 shows the length of the input and the calculation time of three orientation
controllers. Simulation shows that the orientation controller with Laguerre functions
has a quick response and it reduces by 46.2% the calculation time. By applying Haar
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(a) MPC (b) MPC with
Haar functions

(c) MPC
with Laguerre

functions

Figure 12. Sidewalking patterns of the three MPCs tested. From left to right, MPC, MPC with Haar functions

and MPC with Laguerre functions. Both of the MPC with basis functions work faster than the conventional
MPC.

Table 4. Orientation Controller.

Controller Dimension of input Orientation errors Time(ms) Time saving

MPC 16 -4.8% 10.8 0
MPC with Haar 14 -5.7% 8.8 -18.5%
MPC with Laguerre 9 -7.3% 5.8 -46.2%

basis functions, the calculation time is saved by 18.5% compared with conventional
MPC. In Figure 13, all the tested MPCs generated feasible walking patterns while the
MPC with basis functions work faster.

In order to test the efficiency of our proposed method, simulations and experiments
are done. The simulation is shown in Figure 14 where the HRP-2 robot walked forward
with a velocity of 0.2m/s. Experiments using the HRP-2 robot with a reference velocity

of V ref
k+1 = [0.2, 0, 0] and V ref

k+1 = [0.2, 0,−0.2] are shown in Figure 15 and Figure 16,
respectively.

7. Conclusion

The main contribution of this paper is introducing basis functions into the design
of control inputs for online WPG based on MPC. The control input represented by
basis functions, like Haar functions and Laguerre functions, requires less free vari-
ables therefore the computational efficiency is improved. Simulations and experiments
showed that feasible CoM trajectories can be generated while computational time can
be reduced in both orientation and position controller when using basis functions. The
MPC with Laguerre basis functions has the fastest performance because the config-
uration of Laguerre functions can be tuned to fit the property of the control input.
We also showed that the MPC with Haar functions can always provide feasible and
accurate solutions. The basis functions are not restricted to Laguerre functions and
Haar functions, researchers can choose different basis functions for various purposes.
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(a) Patterns by MPC (b) Patterns by MPC with Haar functions

(c) Patterns by MPC with Laguerre functions

Figure 13. Foot trajectories when rotation is involved. MPC with Laguerre functions is the fastest controller.

(a) t = 0s (b) t = 0.8s (c) t = 2.0s

(d) t = 3.0s (e) t = 4.0s (f) t = 5.0s

Figure 14. Bipedal walking using the WPG with Laguerre basis functions.
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Figure 15. The experiment of walking forward when using the WPG with Laguerre basis functions.

Figure 16. The experiment of walking forward and turning right when using the WPG with Laguerre basis

functions.
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8. Future Work

We would like to implement more basis functions to approximate control input. More
detailed analysis about experiment results will also be done. With a fast walking
pattern generator, we can let humanoids challenge more complex tasks while walking,
like manipulation and co-operations with humans.
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