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Abstract— In this paper, we seek to improve the robotic
grasping using reinforcement learning towards the automation
of assembly tasks. We employed a reinforcement learning
method based on the policy search algorithm, call Guided Policy
Search, to learn policies for the grasping problem. The goal
was to evaluate if policies trained solely using sets of primitive
shaped objects, can still achieve the task of grasping objects of
more complex shapes. The results show that even using simple
shaped objects; the method can learn policies that generalize
to more complex shapes. Additionally, a robustness test was
conducted to show that the visual component of the policy helps
to guide the system when there is an error in the estimation of
the target object pose.

I. INTRODUCTION

For the automation of the manufacturing industry, one
essential component that needs to be accomplished is the
assembly task. Assembly using manipulation robots, such as
humanoid robots or industrial robot arms, is still considered
a significant challenge due to the high complexity of the
task and the difficulty in specifying the task for the robot for
each new product. To overcome this challenge, tools such
as an assembly planner has been proposed [1]. There are
different types of assembly planner, here we consider the
grasp/assembly planner, which includes grasping planning.
In general, an assembly planner generates the instructions
that the robot needs to complete a given task. The assembly
task can be described by the components of the product
and its relation to each other. For every component, one
of the jobs of a grasp/assembly planner is to provide the
most suitable grasping posture according to each specific
manipulation task. However, for computing the grasping
postures the planner requires an exact model of the compo-
nent. This requirement makes the planner inflexible to deal
with changes in the shape of the components of a product
or changes in the workspace. To cope with this problem,
we propose a novel approach where the assembly planner
itself is solved by approximating the model’s shape using a
set of primitive shapes [2], and at the time of performing
the grasping, the shape difference between each part and
its approximated model is solved by using reinforcement
learning.
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Fig. 1: Summary of the proposed method. Learning a convo-
lutional neural network policy using the guided policy search
algorithm. The policy uses the information from visual input
and grasping posture from a planner. Training the policy
using only sets of primitive shapes.

Recently, reinforcement learning algorithms have proven
to have great potential to address a variety of problems,
including robotic manipulation. The ability to explore and
learn by itself prove to be very useful to handle novel
situations outside the training scenarios. For this reason, here,
we implemented a reinforcement learning algorithm to learn
the grasping task. We used a policy search algorithm called
Guided Policy Search [3]. The algorithm learns a policy
to control a robotic arm based on visual feedback and the
grasping posture. In our method, we propose representing
the policy using a convolutional neural network that accepts
an image, a grasping posture, and the robot configuration to
control the robot arm, as shown in Figure 1.

The overall goal of our research is to develop a method for
grasping objects with reinforcement learning taking advan-
tage of information provided by the grasp/assembly planner,
i.e., the grasping posture. More specifically, in this work
our aim is to learn policies for grasping by training them
using only a set of primitive shaped objects. Therefore, this
paper seeks to give an insight for the question can a policy
generalize to novel complex-shaped objects, when trained
using combinations of different primitive shaped objects?

This paper is structured as follows. In Section II, we
introduce related works. In Section III we give the details
of the implementation of the guided policy search method
for a Baxter robota, which will be essential for the learning
of an effective policy in the final end-to-end framework.

aRethink Robotics Baxter, Available
http://www.rethinkrobotics.com/baxter/



In Section IV, we describe the experiment conducted to
demonstrate the capabilities of the grasping of different shape
objects via primitive guided policies. Details on the materials
and training have been given so that the results can be
reproduced. Conclusions are discussed in Section V.

II. RELATED WORK

Reinforcement learning (RL) seeks to solve the prob-
lem of how to learn new behavior automatically -how to
map situations to actions- from only high-level cost/reward
specifications [4], [5]. RL policy search methods have been
used in robotics for a variety of manipulation tasks such
as playing table tennis [6], ball-in-a-cup games [7] and
object manipulation [8], [9], [10]. Most of these works
use manual engineered representations to design specialized
policies classes or features. However, the high dimensional
complexity of robotic systems and unstructured environments
demand additional constraints to the general reinforcement
learning formulation to enable its application in the real
world.

Recently, research in deep learning methods has proven
effective in solving tasks such as static image recognition
[11], where this method achieves a recognition considerably
better than human ability. Thus, deep learning combined with
RL methods have been developed to solve complex tasks
using general purpose deep neural networks representations,
this alleviates some of the burdens of manual engineered
representations by using expressive policy classes. Moreover,
end-to-end learning approaches have been proposed [12]
where the system learns a joint model using vision input in
a data-driven manner, such that, after collecting thousands
of samples of successful and unsuccessful manipulations,
the robot learn a model which controls the manipulation
directly from input images. For instance, Pinto & Gupta
[13] trained a convolutional neural network (CNN) for the
task of predicting grasp locations by collecting a dataset of
50K data points; over 700 hours of robot grasping attempts
needed to create the dataset. Also, Levine et al. [14], trained
a deep CNN to predict the probability that the gripper will
result in successful grasps using a dataset of 900K grasp
attempts to learn hand-eye coordination for grasping; over
two months and eight robots working simultaneously were
used to collect this dataset. These methods reduce the burden
of manual feature engineering though typically required a
massive amount of training data, which is not practical for
application.

Guided policy search (GPS) methods [3], [15] seek to
address this challenge by decomposing the policy search
into trajectory optimization and supervised learning of a
general high-dimensional policy. These algorithms trans-
form the policy search problem into a supervised learning
problem, with supervision provided by simple trajectory-
centric reinforcement learning methods. These trajectory-
centric methods instead of training the policy directly, they
provide supervision for training a nonlinear deep neural
network policy from multiple different instances of the task
(e.g. different poses of a target object). Thus, from an

initial policy -that can be a random Gaussian controller- the
GPS method iterates from drawing samples from the current
policy, using this samples to fit the dynamics that are used
to improve the trajectory distribution, and training the policy
using the trajectories as training data. GPS has been applied
to various robotic tasks [16], [17], [18], even in tasks that
require contact-rich manipulation skills [contact-rich GPS],
where it has proved to be able to acquire fast, fluent behaviors
and can learn robust controllers for complex tasks. Since the
GPS method allows a sample efficient learning of a policy,
in this research, we consider using this method to learn a
policy represented by a deep convolutional neural network
for the grasping task of an assembly task.

Models based on sets of shape primitives have been used
in grasp planner such as [2]. Moreover, the primitive shaped
model has been used to guide the grasping posture and the
actual shaped object has been used to plan a grasping posture.
On the other hand, our method calculates a grasping posture
of the primitive shaped model, and the difference between
the actual object and its primitive shaped model is solved by
using the reinforcement learning.

In this work, we study the ability to generalize a motor
skill policy on the task of grasping objects with different
shapes. This step is necessary in order to develop a learning
process for a versatile assembly task using reinforcement
learning.

III. PROBLEM FORMULATION

We consider the robot manipulation task of grasping a
target object using a robot arm equipped with a simple
parallel gripper. First, a grasp/assembly planner, such as the
proposed in previous work [1], can be used to compute
the desired grasping posture of the target object. On this
step, we assume that the pose of the object is known in
order to compute the grasping posture, error in this pose
estimation can be mitigated thanks to the visual component
of the policy as shown in Section IV-C. The grasping posture
is computed by approximating the object shape using a set
of shape primitives [2] and then estimating the appropriate
posture for the manipulation task, e.g., a different posture
might be obtained depending on the target pose of the object.
In this work, we assumed that this process has already been
done and that the grasping posture is available at the time
of executing the policy.

The method proposed in this paper uses the guided policy
search algorithm to learn a visuomotor policy that performs
the grasping of an object at a given position.

A. Guided Policy Search

The reinforcement learning problem is considered as fol-
lows; there is an agent described by a state x. The agent can
perform actions u and observe only part of the state, denoted
as observations o. We consider a finite interaction of the
agent with its environment during T time steps, a complete
run of these time steps is denoted as an episode. In policy
search algorithms, the goal is to learn a policy π(ut, ot)
for taking actions ut conditioned on the observations ot to



Fig. 2: Policy Architecture. Above is the convolutional neural network policy that accepts as input an image, the robot
configuration, and the grasping posture. Below is the pre-training scheme network used to learn the basic visual features, a
separate network trained to predict the distance between the robot gripper and the target object. The weights of the three
convolutional layers are transferred to the policy network.

control a dynamical system. Given an stochastic dynamics
p(xt+1|xt, ut) and a cost function l(x, u), the goal is to
minimize the expected cost under the policy’s trajectory
distribution,

∑T
t=1 l(xt, ut).

In guided policy search, this optimization problem is
addressed by dividing the problem into two components: a
trajectory optimization part and a supervised learning one.
Starting with an initial policy, which may be a random
policy, sample the policy by running it on the robot, for
each different training condition. These samples are store as
trajectories of the form {xt, ut, xt+1}. Then, in the trajectory
optimization part, learn a linear controller using iterative
linear quadratic Gaussian (iLQG) algorithm, the optimization
is constrained to be closed to the trajectory described by the
policy. Afterwards, more samples are drawn from the robot
by executing the learned controllers. This dataset is used
to learn a new policy in a supervised learning fashion. This
completes one iteration of learning using GPS. Refer to [15],
[12] for a complete description of the method. A summary
of the method is displayed in Figure 2.

Our implementation is based on the work of Levine et

al. [12], as to use a deep convolutional neural network
to represent the control policy. In their original work, the
algorithm guided policy search with Bregman Alternating
direction Method of Multipliers (BADMM) was used to learn
an optimal policy. However, in our work, we switch to the
algorithm Mirror Descent Guided Policy Search (MDGPS).
This method showed better performance than BADMM and
requires substantially less manual tuning of hyper-parameters
[15]. Our implementation was based on the open-sourced
project GPS [19].

B. Convolutional Neural Network Policy

The policy is represented with a convolutional neural
network to train vision and motor skill jointly. We propose
the following architecture: the network contains three con-
volutional layers each composed of 32 filters, followed by
a spatial softmax that describe the visual features extracted
from the input image. The filter size of these convolutional
layers is inspired on the model for image classification,
Inception-v3 [20]. The visual features are then concatenated
with the robot configuration and the grasping posture, then



Policies
Cylinder Cube Sphere Cylinder-Cube Sphere-Cylinder Sphere-Cube Sphere-Cylinder-Cube

Cylinder 100% 90% 100% 100% 100% 100% 100%
Cube 100% 80% 100% 100% 100% 100% 100%

Sphere 100% 100% 100% 100% 95% 100% 100%
Duck 90% 80% 85% 100% 95% 95% 100%
Nut 100% 95% 85% 90% 100% 100% 100%

Mechanical part 95% 100% 95% 100% 100% 100% 100%
Mean 97.5% 90.83% 94.17% 98.33% 98.33% 99.17% 100%

TABLE I: Generalization experiment: The seven learned policies using different sets of primitive shaped objects. Success
rates of each policy on each of the target object, including the object not seen during training. For each task 20 trials were
performed.

passed through 2 fully connected layers, each one of 40
units, to produce the joint torques. Figure 2 shows a sum-
marized description of the overall structure of the proposed
policy representation, including the pretrain scheme that is
discussed below.

To speed up the overall learning process, we follow the
idea of pretraining independently each component and then
performing a joint training. In the case of the visual com-
ponents, we trained a separate convolutional neural network
to predict the distance between the gripper position and the
object position from an input image. First, we collected a
dataset of about 2000 images containing the primitive shaped
objects and the robot arm in different arbitrary positions.
Then, we construct a CNN consisting of the same first
3 convolutional layers proposed for the policy, the spatial
softmax layer and a fully connected layer followed by
an Exponential Linear Unit (ELU) activation function that
produces the prediction of the position (an array of 6 values),
we found this activation function to perform better than a
Rectifier Linear Unit (RELU). The filters in the first layer
were initialized with weights of the Inception-v3 [20] model
trained on ImageNet [21] classification dataset. The position
of both the gripper and the object was encoded as 3 points
in the space as shown in Figure 3. The training of this CNN
was done using batch optimization with the Adam optimizer.
After training, the weights in the convolutional layers are
transferred to the policy network, enabling the robot to learn
the appearance of the objects before learning the behavior.

Fig. 3: Robot end effector encoded as 3 points in space. Each
point is represented by its x, y, z component.

On the other hand, as mentioned in Section III, for the motor
skill component the policy search can be trained starting from
a random policy, however, in order to speed up the learning
process we train a linear quadratic controller, for each initial
condition, without the visual component until it is able to
succeed at the task at least 50% of the time. These controllers
are used as the guiding trajectory distributions. Finally, we
fully trained the policy combining the pretrained controllers
and CNN.

C. Cost function

The cost function is a very important component of a
reinforcement learning algorithm, it lets the robot know
what is the objective of the task. In this work, the cost
function for the grasping task was defined in terms of the
distance from the gripper to the target object and then a
reward is given to the robot if the grasp is successful. The
following equation gives the cost function used:

l(xt, ut) =wl2d
2
t + wloglog(d

2
t + α)

+ wu||ut||2 + wgCgrp

(1)

where dt is the distance between three points in the space
of the end-effector (Fig. 3) and their target positions, the
weights are set to wl1 = 1.0, wl2 = 10.0, wu = 1.0, and
wg = 1.0. The quadratic term encourages moving the end-
effector toward the target when it is far, while the logarithm
term encourages placing it precisely at the target location, as
discussed in [18]. The term involving the action ut is used
to motivate the agent to find an energy-efficient trajectory.
Additionally, the Cgrasp term was defined as a reward for
performing a successful grasp, this reward is given only at
the last step of each episode. The reward was defined as

Cgrasp =

{
-10, if grasp is successful
1, otherwise (2)

Grasping is considered successful if after the robot attempts
the grasp and retrieve the arm to the initial position, the
object is still held by the robot gripper.



IV. EXPERIMENT AND RESULTS

A. Parameters

All the experiments were conducted on a simulated Baxter
robot on the Gazebo simulator. This simulator accounts for
the elasticity of the joints actuators. The robot was controlled
at 40Hz via torque control. The state of the robot was defined
as:

x =


q
q̇
eef
˙eef
vf


where q is the robots joint angles, seven joints angles of the
right arm of Baxter. The grasping posture (gp) and the end
effector was expressed in the same frame and encoded as
3 points in space (see Figure 3), so eef is the difference
between the current end-effector pose and the grasping
posture eef = eefc − gp, where eefc is the current end-
effector pose at any given time. This way, the target pose
for any task is always 0. Additionally, the state includes vf ,
the visual features extracted from an RBG image input of
size 150x150x3 through the CNN layers. The camera was
kept fixed in each experiment. Each episode was 100 steps
in length.

B. Generalization

The goal of this experiment was to see the effect of
learning policies trained on different sets of primitive shaped
objects, i.e, its ability to cope with new objects. The task
for the robot is to grasp the object presented on the scene,
one item is given at a time. The objects considered for
training were a cylinder, a cube, and a sphere. Seven policies
were trained, one for each possible set: only sphere, only
cylinder, only cube, sphere-cylinder, sphere-cube, cylinder-
cube, and sphere-cylinder-cube. Each of these objects had
a similar dimension of 3.6cm of width, height, and length.
Only consider one grasping posture was considered for all
the target objects.

For training, each policy was the result of 15 iterations
of pretraining the motor skills and three iterations of full
training as described in Section III. On every iteration, 20

Fig. 4: Top, objects used for training: cylinder, cube, sphere.
Bottom, objects, not seeing on any training, used for testing:
duck, nut, mechanical part.

samples were collected using the controller learned at the
previous iteration. When training a policy with a set of two
different shapes, half of the samples were drawn using one of
the shapes as the target object and half for the other one. For
the policy that included all the primitive shapes, 30 samples
were collected, 10 with each shape.

For testing, the policies were executed on each target
primitive shaped object, additionally, they were also tested
against novel objects that were not seen in any training: a
duck, a nut and a mechanical part. All objects are displayed
in Figure 4. Each test consisted of 20 trials. The experimental
results are summarized in Table I.

The policies learned using only the cylinder and sphere
shapes, separately, were able to learn to grasp its corre-
sponding target object correctly. It seems that the radially
symmetric shape of these objects makes it easier for the
policy to achieve the grasp. However, in the case of the policy
trained using a cube, the gripper needs to correctly approach
the cube in a specific orientation to succeed, making the task
harder to accomplish. Nevertheless, these policies were able
to achieve a successful grasping of the novel objects most of
the time. On the other hand, for the policies trained using sets
of different shapes, the algorithm was able to better capture
the features common to all of the training objects. As a result,
the performance achieved by these policies was greater for
both, the shapes included during training and the novel ones.
All these policies fulfilled the task with a considerably high
success rate on every target object. On top of that, the sphere-
cylinder-cube policy got the best overall achievement.

Therefore, we can conclude that the proposed method is
appropriate for learning the grasping task of novel objects
when trained using only basic shaped objects. Additionally,
using a more diverse set of shapes to train a policy seems to
improve the ability to generalize to novel target objects.

C. Robustness

For the second experiment, we tested the two best policies
from the previous experiment. The objective was to evaluate
how well the policy adapts to errors in the object pose
estimation, based on the visual component. The test involved
inputting the policy with the grasping posture that included
an error offset of the actual position of the target object.
The offset was defined as 0.5 cm, 1.0 cm, and 1.5 cm along
the x-axis. Each policy was tested on all the objects, and
five trials per test were carried out. The results are shown in
Table II.

In this case, we can see that the sphere-cylinder-cube
policy was able to complete the task considerably well up to
1.0 cm of error in the position of the target. Nonetheless, the
sphere-cube policy was able to adapt to most of all the test
including the novel objects even at 1.5 cm of error. While
it is not clear what exactly influenced this results, we can
say that the learned policies do not depend only on the
given grasping posture but also relies on the visual input,
so that it can still achieve grasping of the objects despite the
error in the object pose estimation. Furthermore, even for
the targets that were not present during the training phase,



Sphere-Cube Sphere-Cylinder-Cube
Error offset (cm) 0.5 1.0 1.5 0.5 1.0 1.5
Cylinder 5/5 5/5 5/5 5/5 5/5 5/5
Cube 5/5 5/5 5/5 5/5 3/5 3/5
Sphere 5/5 5/5 5/5 0/5 0/5 0/5
Duck 5/5 5/5 5/5 5/5 5/5 5/5
Nut 5/5 5/5 5/5 3/5 2/5 1/5
Mechanical part 5/5 4/5 0/5 5/5 5/5 0/5

TABLE II: Robustness experiment: the two best policies
from the generalization experiment were tested including an
error offset on the object position along the x-axis.

the policies were able to complete the task. It seems that
the grasping posture helps guide the policy, regardless of the
object, and the visual features help to correct for error in the
pose estimation making it more likely to succeed.

V. CONCLUSION

In this paper, we presented a method for improving the
grasping task in an assembly task using reinforcement learn-
ing, more specifically the Guided Policy Search algorithm.
The proposed method was tested on different conditions to
show that policies trained to grasp using only sets of simple
shaped objects have the potential to generalize to scenarios
with more complex shapes. Additionally, a robustness test
was also performed to show that the visual features help the
policy adapt to error on the target pose estimation. The results
show the potential of using sets of basic shaped objects to
learn grasping policies that can adapt to objects of more
complex shapes, while guiding the overall task with a given
grasping posture.

In this work, just one grasping posture was considered
during training and testing. In addition, the cost function
included only the grasping as successful or not. However,
in the future, we plan to extend this method to achieve
policies for the grasping task that are more flexible for a
variety of grasping postures, where a successful grasp is
evaluated with respect to the requested grasping posture.
The overall goal is to combine the proposed method with
the information available from a grasp/assembly planner to
improve the assembly task. In addition, robotic experiments
are also planned for future work.

Interesting topics for further extending the approach pro-
posed here, includes applying online learning of the system
dynamics, such as the proposed by Fu et al. [22], or reset-free
guided policy search [23] for faster learning.
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