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Abstract— This paper proposes a complete framework to
automatically recognize assembly manipulation motions per-
formed by humans, for the purpose of generating and retrieving
robot motions from a database. Using the concept of affordance,
we can obtain the relationship between the manipulated object
and its associated human actions to narrow down the possible
actions that each manipulated object can afford. Based on
this relationship we design motion templates containing a set
of basic motions associated to the manipulated objects and
stored them in the database. Recognition of motion data is
done by matching it with the existing motion templates on the
database using Hidden Markov Models (HMMs). We verify the
validity of the proposed method using three different assembly
tasks performed by two subjects, which include basic assembly
motions such as insertion and bolt screwing.

I. INTRODUCTION

In recent years, research towards the construction of a
cloud database for assembly tasks has been developed with
the aim at easing the motion generation of robotic tasks [1],
as illustrated in Fig. 1. Hanai et al. [2] have constructed a
framework for sharing and re-using teaching data for robot
motions. In this framework, human motions are stored in
a database and used as teaching data for robot motions.
Therefore, it is very important that the data is stored in
an efficient way to be easily retrieved and re-used. For this
reason, it is necessary to divide into segments the motion
data and assign a name tag (label) representative of each
segmented motion. However, in most databases this process
is manually done and therefore time consuming. Having
this as a motivation, the goal of this work is to develop
a framework able to automatically segment and recognize
assembly motions done by humans.

Previous work on motion recognition and segmentation
have focused mainly on daily tasks. Mori et al. proposed a
method for the recognition of daily motions using a full body
motion capture and Support Vector Machine (SVM) [3].
Based on these results, they proposed another method using
time-series Action Probability to compute the likelihood of
an action occurrence [4]. They use Hidden Marcov Models
to analyzed the Action Probability to determine segmentation
points. Aksoy et al. proposed a classification framework for
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Fig. 1: Outline of a cloud database system for generating robot
motions.

manipulation actions, where they use Semantic Event Chains
(SECs) to represent the changes in the relationship between
hand and manipulated objects [5]. However, the changes are
based on the contact state between the object and hand,
thus actions that do not have contact changes cannot be
recognized.

On the other hand, Koppula et al. discussed the recognition
of human actions and object affordances from RGB-D videos
[6]. They formulated the problem as a Markov Random Field
(MRF) and use SVM to learn the parameters of the MRF.
Nevertheless this work also focused on whole body motions
of daily activities (pouring water, opening a refrigerator, etc.).

None of the related work has discussed assembly tasks,
since they require precise and highly skilled manipulations
with fine motions that are difficult to detect and segment into
basic motions. In this work, we use the concept of object
affordances to narrow down the possible actions (candidate
actions) that an object can afford. Object affordances [7] are
any possible action that a human or animal can execute on
an object or the environment. Using this concept, we can
define the relationship between the manipulated object and
its associated human actions. Based on this relationship we
design motion templates containing a set of basic motions
associated to the manipulated objects and stored them in
a database. It must be noted that as one object can afford
different actions and can be used in the different assembly
tasks, it is less time consuming defining its action relation-
ship than manually labeling all the assembly tasks associated
to it. Next, motion recognition and segmentation are executed



Motion capture
and

Object tracking

Motion Templates candidate HMMsunknown assembly 
motion data Object Recognition

Motion Segmentation

Motion Recognition

Proposed Framework

motion data 
segments

likelihood

Action Relationship of Manipulated Object

manipulated objects

Fig. 2: Outline of the proposed framework for motion recognition. The relationship between objects and possible actions is stored together
with its associated Hidden Markov Models (HMMs) on a motion template. To recognize an unknown sequence of motions, we
first recognize the objects being manipulated and segment the sequence. A series of candidate HMMs are retrieved based on the
action relationship of manipulated object in each segment. Then, the segmented motion data is used to compute its likelihood
of being generated by each of its candidate HMM. Finally, the motion associated to the HMM with the highest likelihood is
considered to be the unknown motion.

by matching the existing motion templates on the database
and the captured data. We verify the validity of the proposed
method using a wooden-made assembly kit, data-gloves, AR
Markers, and an RGB-D camera, to obtain the motion data
of two subjects performing three different assembly tasks.

This paper is organized as follows: in section II the pro-
posed framework for motion segmentation and recognition of
assembly tasks is presented. Then, in section III we describe
the motion capture system for acquiring motion data and
show the obtained results for assembly motions. Finally, in
section IV we give the conclusion of this work and discuss
future work.

II. MOTION RECOGNITION FRAMEWORK

In this section, the proposed framework (Fig. 2) for motion
recognition of assembly tasks is described. First, we intro-
duce the relationship between the manipulated object and its
possible actions for assembly tasks. Next, we explain how to
recognize the motion data by using the previously introduced
relationship. Finally, we introduce a motion template in
which motion data is associated to an object and its action
relationship.

A. Action Relationships of Manipulated Objects

As mentioned in section I, affordance refers to the possi-
bility of an action on an object or the environment [7]. In
this work, we exploit the concept of affordance to obtain the
relationship between the manipulated object and the human
actions afforded by it.We define as “primary object” to the
object that is being manipulated (in motion), and we called
“secondary object” to the object that is mainly supporting
(holding) the action of the primary object. An example of the
relationship between objects and actions is shown in Fig. 3,

primary object action secondary objectobject with screw holesobject with holesinsertscrewpickbolt
Fig. 3: Action relationship of a bolt.

where the relationship between the possible actions of a bolt
and two secondary objects is illustrated.

If the manipulated objects are known, then, knowing the
possible actions related to it is straightforward from the
obtained action relationship. Therefore, the matching search
on the database for the observed motion can be narrowed
down to a finite number of possibilities, improving the
efficiency of the recognition process. It should be pointed
out that as one object can afford different actions and can be
used in different assembly tasks, it is less time consuming
defining its action relationship than manually labeling all the
assembly tasks associated to it.

B. Motion Recognition

At first, a sequence of assembly motions is segmented
at each point in which a manipulated object(s) change
occurs. To determine this change, we define a manipulation
threshold to detect which object is being manipulated by
which hand, this will be explained in detailed in section



III-B. Like this, if the manipulated objects are identified
during the entire assembly process, the observed motion can
be segmented into basic motions. Based on the relationship
between manipulated object and actions, a finite number of
actions from the database are selected as candidate actions.
Then, we employ Hidden Marcov Models (HMMs) [8] to
recognize the segmented motions.

An HMM is a stochastic process model of a sequence
of observed states. This HMM can be used to compute the
probability p(O|λ) of an unknown sequence O of being
generated by the same HMM, i.e. the unknown sequence
is similar to the sequence used to construct the HMM.

In this work, an HMM is constructed to model the finger’s
joint-angles of each hand for each pair of object-action. Each
HMM is represented by the following parameters:

1. Set of States S = {si} (i = 1, 2, 3, ..., N),
2. Observation Sequence O = {ok} (k = 1, 2, ...,∞),
3. State transition probability A = {aij}, aij is the

probability of going from state si to state sj ,
4. Observation symbol probability B = {bij}, bij is the

probability of state si generating the observation oj ,
5. Initial state distribution π = {πsi},

where the number of observed states is set to be N = 3, that
correspond to the hand states of: open, close and in between
open and close.

The parameters listed above are estimated using the Baum-
Welch algorithm [9] and a set of motion data recorded using
the experimental system described in section III. Each trained
HMM λ is stored together with its associated action rela-
tionship of the manipulated object and motion information
(a detailed explanation is given in section II-C).

The motion recognition is then carried out by computing
the probability p(O|λ) of the candidate HMM λ having
generated the observed sequence (unknown motion). This
probability (also called likelihood) is computed for each
of the candidate actions using the Viterbi algorithm [10].
Therefore, the observed motion is determined to be the same
as that of the associated motion to the HMM with the highest
likelihood, for each hand independently of the other.

C. Motion Template

As mentioned in section II-B, each trained HMM with its
associated action relationship of the manipulated object and
motion information are stored in a database. For this pur-
pose, we define a storage format called “motion template”,
where besides storing motion data and its associated action
relationship of the manipulated object and trained HMM,
we also stored the manipulation threshold. Fig. 4 shows the
proposed motion template for a bolt.

It should be noted that the proposed motion template can
be applied to other type of manipulation tasks for storage,
sharing and/or recognition purposes.

III. EXPERIMENTS

In this section, we describe the motion capture system used
in this work and show the obtained results for recognizing
assembly motions. First, we show the assembly tasks used
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Fig. 4: Motion template of a bolt.

Fig. 5: F1 car model used in this work.

in this work. Next, we describe the motion capture system
employed for acquiring the assembly motion data. Finally,
we show the experimental results for 3 different assembly
tasks.

A. Assembly Task

To verify the validity of the proposed framework, we use
the commercially available wooden kit: SEVI R⃝ construction
kit F1 car. This assembly kit can be used to construct differ-
ent models and it also includes a screwdriver and a wrench.
In this work we will only use the F1 car model shown in
Fig. 5. According to the relationship introduced in section
II-A, the possible actions for each of the objects composing
the F1 car are listed in Table I. An object composed by more
than two single objects is called “composite object”, Fig. 6
shows the composite objects of the F1 car model.

B. Motion Capture System

To acquire the motion data of the assembly task described
in the previous section, we use a pair of data gloves (Cy-
berGlove III [11]), an RGB-D (Orbbec Astra S [12]), and
AR markers, as shown in Fig. 7. The sequences of 22 joints’
angles (per hand) and hand/object positions compose what
we called motion data and are stored in the motion template.
The interphalangeal and metacarpophalangeal joints of the
thumb, index, and middle fingers, and thumb abduction (total
9 sequences) are selected for training HMM. We employed
the joints’ kinematic model of Wang et al. [13]. These data
are obtained from the data gloves with a sample frequency
of 10 Hz.

For determining which object is being manipulated by
which hand and apply the action relationship in the motion
template to recognize assembly motions, we need to have



TABLE I: Assembly motion list for the F1 car model

Primary Type of Secondary

object motion object

bolt
pick

insert board, wheel, wheelcover

screw nut, cube

nut
pick

screw bolt

cube pick

(with screw holes) screw bolt

board
pick

pile up board, cube

wheel
pick

insert bolt

wheelcover
pick

insert bolt

screwdriver
pick

screw bolt

wrench
pick

wrench nut

(a) assembled wheel (b) body

(c) front wing (d) rear wing

Fig. 6: Composite objects of the F1 car shown in Fig. 5.

knowledge of the objects being manipulated. For this partic-
ular case of the wooden toy and for the sake of simplicity,
we use a particle filter to track specific colors to detect the
position of the objects. Also, AR markers are employed to
detect the position of the composite objects and the position
of the hands, that together with the data gloves are used to
compute the fingertips positions. Using the object and the
fingertips positions, we define a manipulation threshold to
determine if an object is being manipulated by a hand or
not. If the position of the object (relative to the fingertips
position) exceeds the defined threshold for the thumb, index

RGB-D cameraData Glove

AR Marker

Fig. 7: Overview of the motion capture system.

and middle fingers, it is determined that the object is not
being manipulated. In case the positions of multiple objects
are under the defined threshold, the object with the closest
distance to the middle finger is selected as the manipulated
object. As the grasping configuration is different for each ob-
ject, the manipulation threshold was experimentally defined
for each object (about 5 cm). This manipulation threshold
was determined based on the experimental data used for
training the HMMs and it is stored in the motion template.

C. Results and Discussion

As mentioned in section II-B, to estimate the parameters
of each HMM, a set of training data is necessary. Using the
motion capture system described in the previous section, we
gathered a training data set composed of the single object
motions listed in Table I. Each motion was done when
holding the primary object with each hand, and repeated 15
times per hand.

To verify the validity of the proposed framework, we
recorded a test data set composed of both single object and
composite object motions of 3 different assembly tasks:

1. Wheel assembly (single object)
2. Partial body assembly (composite object)
3. F1 car final assembly (composite object)

Each assembly task was recorded 5 times by two different
subjects (subject “A” being the same person that recorded
the training data).

To evaluate the test data set, we prepared a set of ground
truth data by manually segmenting and identifying the as-
sembly motions at each time sample (10 Hz). We define the
success rate as the number of correctly recognized frames
divided by the number of recorded frames per assembly
task. Thus, if the experimental segmentation differs from
the ground truth, the recognition result is taken as incorrect.
Table II shows the average of the success rate obtained for
each assembly task over the recorded test data set (5 trials).
In this table, “object recognition” percentage refers to the
correctly recognize objects when manipulated by any of the
hands. The “motion recognition” percentage represents the
correctly recognized motions when the manipulated object
was correctly recognized. Here and after we will discuss only
the motion recognition results since the object recognition



TABLE II: Average success rate [%]

Assembly Object Motion
task recognition recognition

Subject A

wheel 81.6 60.5

body 45.9 64.0

F1 car 57.4 44.5

average 61.6 56.4

Subject B

wheel 69.8 52.8

body 46.7 81.0

F1 car 67.0 52.8

average 61.1 62.2

Average
subjects A and B

wheel 75.7 56.7
body 46.3 72.5

F1 car 62.2 48.7

average 61.4 59.3

TABLE III: Average success rate per motion

Type of motion Success rate (%) Frequency (%)

pick 22.8 49.5

screw 28.8 24.0

pile up 41.7 6.0

insert 46.1 9.1

no motion 48.3 11.4

depends mainly on the vision system and it is out of the
scope of this work. It should be noted that although it
would have been easier to assume that the manipulated object
was known, everything was experimentally obtained. Fig. 8
shows snapshots of the recorded task when assembling the
wheel, the subcaptions show the recognized motions. In red
are written the incorrectly recognized objects and motions,
in gray the correctly recognized objects but incorrectly
recognized motions, and in blue the correctly recognized
objects and motions.

As mentioned before, the success rate includes not only
the performance of the trained HMMs but also that of the
segmentation process, which relies mainly on the recognition
of the manipulated object. For example in Fig. 8(a), the left
hand is not holding any object but the system incorrectly de-
tects the wheelcover as being in hold by the left hand. Also,
as the segmentation is based on a manipulated object change
(i.e. the manipulated object changes), it was difficult for the
system to break the pieces of motion starting with picking
(e.g. pick and insert, which for the HMMs training was
considered as two different motions). In those cases where
the segmentation failed to separate two different motions, the
recognition result was that of the motion that took a longer
execution time. Therefore, the picking motion recognition
success rate was the lowest among all the motions, as shown
in Table III. In Figs. 8(a), (c) it can be seen that when the
object is being pick the system recognizes the motion as
insertion.

To isolate the influence of this segmentation problem in the
recognition rate, we prepared a new set of ground truth data

(a) RH: wheelcover insertion,
LH: bolt insertion

(b) RH: wheelcover insertion,
LH: bolt insertion

(c) RH: wheel insertion,
LH: bolt insertion

(d) RH: wheelcover insertion,
LH: bolt insertion

(e) RH: nut screwing,
LH: bolt picking

(f) RH: nut screwing,
LH: bolt screwing

Fig. 8: Snapshots of the wheel assembly task by time execution or-
der. The recognized motions are written at each subcaption,
where LH means left hand, and RH right hand. Written in
red are incorrectly recognized objects and motions, in gray
are correctly recognized objects but incorrectly recognized
motions, and in blue are correctly recognized objects and
motions.

where we consider a pick motion followed by an insertion
motion as a single segment of insertion, and the same for
a pick motion followed by a screw motion (a single screw
segment). The average success rates with the new ground
truth are shown in table IV. It can be seen that overall, the
recognition improved around 3.7%.

Regarding the versatility of the system, from table IV it
can be seen that the difference in the success rate between
subject A (same person that recorded the training data set)
and B, across all the evaluated assembly tasks is only 1.7%,
and it is higher for subject B. In the particular case of the
body assembly task, subject B has an almost 20% higher
success rate than subject A. These results demonstrate the
versatility of the proposed framework. As shown in table V,
even though the assembly task average execution time for
subject B is considerably shorter (around 34%) than subject
A for the F1 car assembly task, the difference in success
rate is only 1.3%. This means that the execution time of the
assembly task does not significantly influence the recognition



TABLE IV: Average success rate when considering
successive motions [%]

Assembly Motion

task recognition

Subject A

wheel 72.6

body 62.1

F1 car 51.6

average 62.1

Subject B

wheel 57.8

body 80.9

F1 car 52.9

average 63.9

Average
subjects A and B

wheel 65.2

body 71.5

F1 car 52.3

average 63.0

TABLE V: Execution time comparison [s]

assembly task Subject A Subject B

wheel 41.5± 12.2% 36.1± 4.5%

body 66.3± 13.7% 58.3± 19.0%

F1 car 53.1± 13.9% 34.9± 20.9%

results. Also, although assembly tasks such as picking and
screwing could change considerably from subject to subject
due to personal habits, it can be seen that the proposed
framework is able to recognize more than half of the tested
data.

IV. CONCLUSIONS

This paper proposed a complete framework to automat-
ically recognize assembly manipulation motions performed
by humans to generate new robotic assembly tasks. The main
results of this paper are summarized as follows:

1. We introduced a relationship between manipulated ob-
ject and possible actions for assembly tasks. Using this
relationship, we are able to narrow down the search for
candidate motions.

2. We proposed a motion template for storing motion
data on a database. In this template, the relationship
of manipulated object to each action together with a
manipulation threshold use for segmentation are stored
to efficient the search process for data.

3. We recognized assembly motions using Hidden Markov
Models based only on the data of three fingers’ joint-
angles of each hand.

4. We showed experimental results of three different as-
sembly tasks executed by two different subjects to verify
the validity of the proposed framework.

The results showed that the proposed framework is ver-
satile and robust to changes in execution time and type of

assembly tasks. In the future, we would like to improve the
segmentation process and consider other motions such as
holding, in order to improve the overall recognition success
rate. Also, we used object’s colors and AR markers to track
the objects. However, the assembly objects are often metalic
and attaching markers to the objects may interfere with the
natural process of assembly. Thus, in the future we would
like to use an object detector to track the objects. Object
detectors (e.g. YOLO [14]) are expected to be useful for
applying our framework to all kinds of objects and tasks.
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