
A virtual capture framework for assembly tasks

Damien Petit1∗ Ixchel G. Ramirez-Alpizar1

Qiming He1 Kensuke Harada1,2

Abstract— Nowadays more robots are used in manufacturing
to accomplish more complex tasks, especially in assembly.
Programming by demonstration method allows to teach robots
some specific tasks, but it requires a lot of data. However in
assembly, wearable motion capture device (like data-glove) are
often difficult to set-up, calibrate and use with other objects.
To solve this issue we propose a new capture method of
assembly tasks to be used without any wearable capture devices,
in which real hands are used to assemble virtual objects to
collect the poses and contact points between hands and objects
along the assembly process. The final goal of this work is to
develop a system to easily collect data of a human assembly
demonstration, analyse them, and realize the assembly on a
dual-arm robot.

I. INTRODUCTION

Teaching robots how to do a task is indispensable for
the automation of manufacturing processes. In recent years,
robots are required to perform different tasks instead of
repeating the same task over and over again. On the other
hand, recently, a number of research has been done on motion
planning algorithms to automate the motion generation of a
robot. However, if the planned trajectory is not executable
due to the existence of unknown obstacle, the robot will
not move and a new trajectory has to be computed after
precisely measuring the environment shape by using a 3D
vision sensor [1].

Traditionally, to compute a joint trajectory of a robot ma-
nipulator tracking the desired end effector trajectory, a robot
is programmed by using inverse kinematics [2]. However,
in clutter environments, the problem of computing a motion
trajectory is non-trivial, as the robot needs to avoid obstacles
in the environment by itself. The workload of programming
a robot for complex tasks becomes increasingly difficult, as
most of the environment is not static [3]. For an assembly
task, the environment is usually dynamic and involves several
tasks with different assembly components. Which is why
most of the assembly tasks remain done by humans.

In the method of programming by demonstration (PbD)
[4], the motions of humans doing the desired task are
recorded and used to program the robot’s motion. Aleotti
et al. [5] use this method to program a robot in a virtual
environment. In our set-up shown in Fig. 1, we use real hands

1 Department of Systems Innovation, Graduate School of Engineering
Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531,
Japan.

2 Manipulation Research Group, Intelligent Systems Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba, 305-8560, Japan.

∗ Corresponding author e-mail: damien.petit@
hlab.sys.es.osaka-u.ac.jp

Fig. 1: Experimental environment and aim of the research

Fig. 2: The occlusion and object tracking problems are
inexistant in the virtual environment. Moreover all the virtual
poses (objects and hand joints) are known at each frames

to manipulate the virtual objects as to avoid the problem
related to occlusions and object tracking [6] as seen in Fig. 2.

In this paper, we build up a 3D scene where human hands
detected by a Leap Motion Controller (LMC) a are displayed
and interact with the virtual objects to be assembled. When
the hands are moved in the real world, they are also moved
in the virtual world so that we can record accurate hands’
poses [7]. The user can either put the LMC on the table
below his hands or wears the LMC on his forehead. We
record the fingers’ positions and object parts’ (in this study
a toy airplane) poses when carrying out the assembly task.
The recorded data will later be used to reproduce the same
assembly task in a robot’s simulator software to confirm the
validity of the proposed method.

Two of the difficulties and the main contributions of
this work were the development of a custom collider and
virtual assembly conditions used to render realistically the
assembly of the virtual objects between themselves and their
interaction with the virtual hands. As it will be shown later
in the paper, the usual colliders (convex, cubic or concave)
were unable to be used for this purpose and a new collider

ahttps://www.leapmotion.com/



had to be developed.
This paper is organized as follows. In section II the

modules of the framework are presented. Next, in section III
the results of the assembly task recorded via the framework
are presented. Finally, in section IV we discuss the results
of the assembly framework and future work.

II. FRAMEWORK

In this section we present the different modules of the
framework used to capture an assembly task to be able to
play it back on a dual-arm robot. In this paper we focus on
the assembly tasks of a toy airplane but the implementation
of the framework allows the import and assembly of any
object model.

A. Hand tracking

There are many ways to track human’s hands [8] [9] [10].
We chose the tracking sensor named ‘Leap Motion’, which
can track hands so that people do not need to wear motion
capture devices on their hands, as shown in Fig.1. The LMC
has two cameras and three infrared LEDs to track hands
visually.

We use the Interaction Engine API provided by the LMC
and import the toy airplane 3D models to build the virtual
environment. The assembled parts are shown in Fig.3. When
the hands are tracked, you can interact with the virtual
objects. The user is able to see his virtual hands and the
object on the screen while performing the virtual assembly
as seen in Fig.1 It is possible to grasp an object similarly as
grasping it in the real world.

B. Assembly conditions

In order to explain the assembly conditions that we de-
fined, we take as an example the assembly task of the top
wing on the main body of the airplane as shown in Fig. 3. At
first, both of the objects can be moved separately, as shown
in Fig. 3 namely Disassembled state. When the two objects
are moved to the position and orientation which respect
the assembly conditions, they will be assembled. Then the
assembled objects behave as a single object, i.e. all parts of
the object are moved together.

The conditions for assembling the body and the wing are
the following (Each condition can be satisfied in any order):

1) The angle β between the two objects’ Y axes condition
is: 0 ≤ β ≤ θ1.
Initially, the body and the wing are placed randomly as
shown in Fig.4. We define the angle between two ob-
jects’ Y axes as β. When the value of β is nonnegative
and less than θ1, we regard this condition as satisfied.

2) The angle γ between the two objects’ Z axes condition
is: 0 ≤ γ ≤ θ2. To ensure that the two objects are
in the desired orientation, we also set a condition on
the angle γ, which represents the angle between each
objects’ Z axes, as shown in Fig. 5. When the value
of γ is non-negative and less than θ2, we regard this
condition as satisfied. In addition to the first condition,
the two objects are in the same orientation.

3) The vector from the desired position to the current
position is within a sphere radius around the desired
position center.
Besides the orientation, we also have to consider the
relative position between the objects. Assuming that
one object (the airplane body) is fixed, then the other
object’s (the airplane wing’s) position for which two
objects can be assembled is called ‘desired position’
when it is at ‘current position’. We set the length of
vector PB from the desired position center OBd to the
current position center OBr (Fig.6), to be less than the
radius of the sphere around OBd.

When these three conditions are satisfied, the two objects
will be assembled. The angle θ is a value that can be adjusted.
During the experiment their values were set as θ1 = θ2 = 10
deg. The assembled airplane body and wing are shown in
Fig.3.

C. Assembly order

Assembly tasks usually involve more than two objects.
Planning every possible assembly order is difficult because
of the large workload. In this research, different assembly
orders are expected to be recorded. And/Or graph can express
possible assembly steps. Fig.7 shows that an And/Or graph
for 4 components (from left to right: cockpit, wing top,
body upper, body lower) in this experiment. There are 10
assembly steps in total. Each step means the assembly of
two components.

To express all possible assembly orders in a relatively easy
way, a tree structure shown in Fig. 8 is presented. In this tree,
every node is a component of the assembly and all of the
assembled components are included. The root node can be
any single component. Here we use the ’body upper’ as the
root. After an assembly between two objects, a parent-child
relationship is generated. The object with arrow tail becomes
the parent of the object with arrow head. When the whole
assembly is finished, the parent-child relationship between
objects is same as the tree structure. Generally, only two
objects that are connected can be assembled.

For example, considering the assembly of body upper,
body lower, wing top and cockpit (all of them are marked
blue in Fig. 8). At first, only assemblies between body upper
and body lower, body upper and wing top or wing top
and cockpit are allowed. By the step 8 shown in Fig. 7,
the cockpit and wing top are assembled, then the assembly
between cockpit and body upper (step 5) is allowed because
the cockpit is connected with the wing top that can be
assembled with body upper. After step 5, body upper and
body lower can be assembled and the assembly of these 4
objects is finished.

D. Visual guidance for assembly task

To realize the assembly in virtual environment, the user is
able to receive some visual cues to help him understand how
to assemble the objects. This function rely on the knowledge
of the And/Or graph. In most cases, the user feel uneasy to



Fig. 3: The different assembly conditions

Fig. 4: Condition 1

Fig. 5: Condition 2

the assembly components at first (due to the lack of haptic
feedback), so the guidance for the assembly can be necessary.

We designed two different guidance methods. One is to
show the video of the assembly and the other one is to show
arrows between the two objects as seen in Fig.9.

We add a screen in the background to show the assembly
tutorial video in the scene (Only if necessary). At the
beginning, there is no screen until the user grasps two
objects. Then the screen shows the assembly task of these
two specific parts. So that the user is able to understand how
to assemble those two parts.

The arrow is shown as soon as an object is grasped. The

Fig. 6: Condition 3

Fig. 7: And/Or Graph

arrow is half transparent and its color is set according to the
object’s color. We take the RGB value of the object mesh
into consideration.

We consider that the object’s RGB values are r, g, b; then
the arrow’s RGB value will be r’, g’, b’ as defined bellow:
• If r ≤ 127, r’ = r + 128, else r’ = r - 128.
• If g ≤ 127, g’ = g + 128, else g’ = g - 128.
• If b ≤ 127, b’ = b + 128, else b’ = b - 128.

Besides the color, we also set the tail point and the direction
of the arrow. In the toy airplane case, the arrow tail point of



Fig. 8: Tree Structure

Fig. 9: Visual assembly guidance

the body upper is the airplane body’s center of the assembly.
The direction is pointed to the arrow tail attached on the
target assembly object (wing top) as seen in Fig. 9.

E. Collider

In order to detect the contacts between the fingers and
the objects as well as the contacts between objects it is
necessary to use colliders. After empirically testing three
different types of colliders (convex shown in Fig. 10, cubic
shown in Fig. 11, concave shown in Fig. 12), we came to
the following conclusion. We need the collider to have a
high accuracy and a low computing cost. However the three
colliders we tried, did not satisfied our demands for object-
fingers contacts and object-object contacts. Only the convex
collider satisfied the demand of the object-fingers contact
(but with poor spacial accuracy as seen in Fig. 10 which lead
to a gap during the assembly as seen in Fig. 14) nonetheless it
did not satisfy the demand of the object-object contact. On
the other hand the convex collider did satisfy our demand
of object-object contact, however due to its complexity (as
seen in Fig. 12) its interaction behavior with the fingers is
quite slower than the other colliders, and thus not feasible
for continuous motions like assembly tasks. For these reasons
we developed a point collider Fig. 13.

The point collider is composed of basic spherical colliders
while respecting faithfully the shape of the object. Compared

Fig. 10: Convex collider

Fig. 11: Cubic collider

to the concave collider, the point collider is simpler, so the
computational cost is lower. Compared to the cubic and
convex colliders, the point collider has higher accuracy. With
the point collider, we are able to get a higher accuracy with a
relatively low computing cost. The point collider is generated
with the following steps:

1) Use Poisson-disk algorithm sampling points Vi from
the object mesh.

2) Compute the normal Ni for each point Vi.
3) Translate Vi along the direction of Ni as: Vi′ = Vi −

Ni ∗ r, where r is the radius of the sphere colliders.
With step 1, we generate points on the surface of the mesh.

Since we will add sphere colliders at each point position, the
collider would be bigger than the mesh (by the size of the
radius of the sphere collider). To make the size of the point
collider the same as the mesh size, we translate the points’
positions of the sphere colliders along their normal. For the
assembly task discussed in this work, the radius of the sphere
colliders is set to 2 mm.

Even if the point collider’s computing cost is low for
finger-object contact, the computational cost for the object-
object contact is still considerably high due to the large
number of spheres on each model. In order to improve this,



Fig. 12: Concave collider

Fig. 13: Point Collider

we use 2 point colliders with a different number of spheres.
The model with a high number (1000 spheres) is used for
finger-object contact, and the model with a low number (200
spheres) is used for object-object contact.

Depending on whether the manipulated object is grasped
or not, we exchange the colliders. Before the object is
grasped, the collider attached is the “accurate” point collider
(high number of spheres), so we can get accurate grasping
points. After the object is grasped, the collider is changed
to the “fast” collider (low number of spheres) so that the
movement of the object is smoothly and the assembly gap
is smaller than with the convex collider.

We exchange colliders when the grasp state changes.
However, when the hand is trying to grasp the object, the
grasp state is usually unstable and the collider changes every
sampling frame. To ensure the stability of the grasp state,
we regard the object as grasped if the object is computed as
grasped continuously for 5 frames in a row. We also regard
the object as not being grasped if it is computed as not
grasped continuously for 5 frames.

F. Screwing motion

Not all of the objects can be assembled by placing them in
the desired position. In section II-B, the assembly between
the airplane body and the airplane wing is described, but
there are some objects with thread (like shown in Fig. 16)
that do not follow the same conditions. This kind of objects
need to be screwed to be assembled and this can be achieved
by hands or tools. Indeed, the bolt shown in Fig. 16 is almost
fully inserted into the hole of the object so it is difficult to be
assembled by hands. In this case supporting tools to assemble
the bolt are needed. The screw driver shown in Fig. 16 is
used for the assembly of bolts. When the blue part is inserted
into the concave part of the bolt, the bolt is able to rotate
with the screw driver so that the bolt can be assembled.

To assemble objects with a thread in the virtual world, we
defined the following rule taking into account the pitch of
the thread.

The definition of a bolt is shown in Fig. 16. When the bolt
rotates θ deg, it will move forward for Pitch · θ

360 . The bolt

Fig. 14: Assembly using the convex collider resulting with
a large gap between the wing and body

:w
Fig. 15: Assembly using the point colliders resulting without
a gap

cannot be assembled until it has moved forward for TL.
The screwing motion is difficult to operate in the virtual

world because there is no haptic feedback and the object to
screw is usually smaller than a finger. To make the screw
motion work properly, the target object (that the bolt will
be insert in) is set to be in a fixed position and orientation.
After the bolt is assembled with the target object, the target
object becomes free in position and orientation.

G. Data recording

Finally, we record the data that will be used to control the
robot and save it in a CSV format file. The data is recorded
at a frame rate of 50 fps. The necessary data are:

1) Time stamp.
2) Palms’ poses.
3) Fingers’ poses.
4) Fingers’ contact value (whether the finger is colliding

with any objects or not).
5) Objects’ poses.
6) Objects’ grasped value (whether the object is grasped

by left or right hand).

III. RESULTS

When we direct the wing (from above) toward the airplane
body in the defined contact pose, the wing and the body will
be assembled into one object. Then, we can move the body
and the wing together by grasping any part of the assembled
object, even if we only grasp the wing or the body. We can
then assemble the rest of the airplane following the same
procedure. During all the procedure, the data is recorded in
the CSV file.

To make the assembly more realistic, different assembly
orders are allowed. A tree structure is built to represent the
relationship between each component. The conditions for
the assembly of objects with thread is also considered. To
assemble bolts, a virtual screw driver is used, as shown in
Fig. 17.



Fig. 16: Screwing motion for a bolt

Fig. 17: Screwing assembly steps

IV. DISCUSSION AND FUTURE WORK

Assembly Conditions

In the current implementation the assembly conditions
are pre-setted. As future work, we plan to get all possible
assembly conditions automatically by analyzing the parts’
models to determine which part can be assembled with an
specific part. This will allow our framework to be used for
different types of assembly tasks.

Virtual Workspace

Currently we use a monitor to render the virtual world,
which limits the perspective of the user. Our next step is to
use an HMD to increase the depth perception of the user and
make the assembly tasks more realistic, enabling the user to
execute the tasks more naturally.

Robot simulation

We are planing to use this framework with several assem-
bly tasks and different users to have enough data to construct
a motion plan for the robotic simulation on a dual arm robot
[11]. This will allow the user to easily teach the robot how
to assemble new tasks.

V. CONCLUSION

To reproduce assembly tasks, robots need to know when
and how to move. In this work, we proposed a framework
to easily collect data of a human assembly demonstration
in order to teach a robot how to assemble objects. The
proposed framework was developed in a virtual scene where

we can track our hands’ movements and the virtual objects
motion all the time. We defined assembly conditions in
order to merge two or more objects and considered them as
one. We introduced a visual guidance for the user to know
how to assemble the object it is holding to compensate for
the absence of haptic feedback. We also developed a point
collider to balance the contact points’ position accuracy with
the computational cost needed to obtain these points. Finally,
we also showed how to assemble bolts using a screwdriver
in the virtual scene.

In the future we would like to expand the proposed
framework for other types of tasks, like manipulation of daily
life objects, etc.

ACKNOWLEDGMENT

This paper is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES

[1] R. C. Luo, C.-W. Kuo, and Y.-T. Chung, “Model-based 3d object
recognition and fetching by a 7-dof robot with online obstacle avoid-
ance for factory automation,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on, pp. 2647–2652, IEEE, 2015.

[2] R. M. Murray, A mathematical introduction to robotic manipulation.
CRC press, 2017.

[3] M. Mahdavian, M. Shariat-Panahi, A. Yousefi-Koma, and A. Ghasemi-
Toudeshki, “Optimal trajectory generation for energy consumption
minimization and moving obstacle avoidance of a 4dof robot arm,”
in Robotics and Mechatronics (ICROM), 2015 3rd RSI International
Conference on, pp. 353–358, IEEE, 2015.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer handbook of robotics, pp. 1371–
1394, Springer, 2008.

[5] J. Aleotti, S. Caselli, and M. Reggiani, “Toward programming of
assembly tasks by demonstration in virtual environments,” in Robot
and Human Interactive Communication, 2003. Proceedings. ROMAN
2003. The 12th IEEE International Workshop on, pp. 309–314, IEEE,
2003.

[6] S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, and
C. Theobalt, “Real-time joint tracking of a hand manipulating an
object from rgb-d input,” in European Conference on Computer Vision,
pp. 294–310, Springer, 2016.

[7] F. Hernoux, R. Béarée, and O. Gibaru, “Investigation of dynamic
3d hand motion reproduction by a robot using a leap motion,” in
Proceedings of the 2015 Virtual Reality International Conference,
p. 24, ACM, 2015.

[8] F. Mueller, D. Mehta, O. Sotnychenko, S. Sridhar, D. Casas, and
C. Theobalt, “Real-time hand tracking under occlusion from an
egocentric rgb-d sensor,” in Proceedings of International Conference
on Computer Vision (ICCV), vol. 10, 2017.

[9] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim,
C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, et al., “Accurate, robust,
and flexible real-time hand tracking,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems,
pp. 3633–3642, ACM, 2015.

[10] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz, M. Botsch,
and M. Pauly, “Robust articulated-icp for real-time hand tracking,”
in Computer Graphics Forum, vol. 34, pp. 101–114, Wiley Online
Library, 2015.

[11] D. Bassily, C. Georgoulas, J. Guettler, T. Linner, and T. Bock,
“Intuitive and adaptive robotic arm manipulation using the leap motion
controller,” in ISR/robotik 2014; 41st international symposium on
robotics; proceedings of, pp. 1–7, VDE, 2014.


