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Abstract— This paper presents a framework to extract the
grasping, contact points and object parts motion from an
assembly demonstration. With this framework the object parts
are recognized and tracked using Augmented Reality (AR)
markers. The data of the user’s hand assembling the object
are acquired with a motion capture device. The grasping
and contact points are determined with the motion capture
data, the models of the object parts and point cloud based
algorithms. The functionality of the framework is demonstrated
with an experiment where the user assembles two parts of a toy
airplane. The grasping and contact points between the object
parts are extracted and visualized. This framework aims at
capturing the necessary data to reproduce the assembly motion
on a dual-arm robot for future work.

I. INTRODUCTION

Grasping and manipulating objects is considered to be
an indispensable skill in many robotic systems. Over the
past decades several algorithms have been developed to
realize a stable robotic grasp. In order to achieve stability,
different algorithms called grasping synthesis [1] have been
established. The different approaches of these algorithms
can be divided in two categories. The analytical approaches
which are based on kinematic and dynamic formulations.
And the empirical approaches which reproduce the human
grasping motion and avoid the complex computation of the
analytical algorithms. The framework presented in this paper
collects the necessary data used in empirical approaches.

The key data required by empirical approaches are the
fingertips positions of the human hand grasping the object
and the grasping areas of the object. In this framework
these data are captured using AR markers, a data acquisition
glove (hereafter called “data-glove”) [2], the 3D model of
the object parts and point cloud based algorithms using the
(Point Cloud Library) [3]. In the particular case of an as-
sembly system, the objects manipulated may require certain
configurations that generate extra constraints on the grasping
problem. To correctly identify these extra constraints, the
motion and contact points between the object parts being
assembled are also captured. The capture of these contact
points is one of the contributions of our work compared
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to other data extraction systems which focus only on the
grasping and manipulation of one object [4].

Furthermore, most of the acquisition systems developed
for human’s movements are expensive due to the use of
tactile gloves/sensors, motion capture systems, fine tracking
cameras, etc. [5], and can not be used on different scenar-
ios/applications. In contrast, we have developed a simple and
versatile acquisition system that could be used in different
situations and with a very low cost. The most expensive part
of the framework is the data-glove which only costs 99 USD
for 3 fingers tracking and 999 USD for upper body tracking
a. This is much cheaper compared to other popular motion
capture devices which cost around 10000 USD [2].

This paper is organized as follows. In section II the
modules of the framework are presented. Next, in section III
the data generated using the framework are shown while
carrying out an assembly task. Finally, in section IV we
discuss the results of the human demonstration and future
work.

II. FRAMEWORK AND REFERENCES

In this section we present the reference frames and the
methods used in the framework to capture the motion, contact
and grasping points of the object parts being assembled.

A. Framework

The framework is outlined in Figure 1. The framework
uses as inputs an RGB camera, the models of the object parts
and the data captured by the data-glove. The framework is
used to capture the object and hand motion, the contact and
grasping points as well as the fingertips position all along
the assembly process. The framework operates as follows.

The RGB images are acquired by the camera and
then processed through the object recognition and
tracking module to recognize and determine the poses of
the marked object parts and data-glove in the camera frame.

The poses of the object parts and the object parts mod-
els are used in the contact points determination
module to determine the contact areas between the object
parts.

The data-glove captures the fingertips position in its own
frame reference. The calibration module calibrates the
data-glove reference on the marker placed on the data-glove
in order to obtain the fingertips position in the camera frame
reference.

ahttps://neuronmocap.com/products-fullwidth



Fig. 1: Data flow of the framework

Once the fingertips and object parts poses are known in
the camera frame the grasping areas are determined using
the object parts models and a nearest neighbor search in the
grasping points extraction module.

All the modules of the framework are integrated with the
Robot Operating System b ROS [6]. In the following sections
the reference frames and modules used in the framework are
described in more details.

B. Frame definitions

The reference frames used in this work are shown in
Figure 2. We consider the RGB camera frame C, the AR
markers’ frame attached to the object parts assembled by
the user M1 and M2 and the marker’s frame attached to the
data-glove MG. The frames captured by the data-glove F1,
F2, F3 represent respectively the thumb, index and middle
fingertips of the user. The frame G represents the data-glove
internal frame.

C. Object recognition and tracking

To identify and localize the marked object parts in the
RGB images, we use the ArUco library c. ArUco relies on
printed black and white square fiducial markers (as seen in
Figure 2), instead of natural textures or key points [7], to
provide a robust and accurate pose estimate. The algorithm
consists in detecting the square contour, finding the optimal
threshold in the bimodal image, extracting the binary code,
and comparing it to the known dictionary, to infer the marker
identity (in our case either M1, M2 or MG). Finally,
the marker pose CTM (with M = {M1,M2,MG}) is

bhttp://www.ros.org/
chttp://www.uco.es/investiga/grupos/ava/node/26

Fig. 2: Reference frames used in this work.

estimated by iteratively minimizing the image plane projec-
tion error of the four square corners, with the Levenberg-
Marquardt method.



Fig. 3: Top wing point cloud generation. A) Mesh model. B)
Vertices of the mesh model C) Point cloud model based on
the mesh model after sampling

D. Point cloud model generation

In this framework the object parts models are represented
using point clouds instead of meshes. With the rise of the
RGB-D cameras and LIDAR d, point cloud data acquisition
is becoming more and more common and affordable. Even
though triangulation technique exists [8] to generate a mesh
from a point cloud, the process remains complex and time
consuming, which makes it difficult to use in real-time
application. This is especially true for large scene coming
from slam algorithm [9].

On the other hand, most of the object parts are given in
a polygon/mesh representation. This is particularly true for
assembly parts made or used in factory. In this paper, the
object parts models of the toy airplane are originally given
in such a representation. In order to obtain a point cloud
representation of these parts, we create a new layer populated
with a point sampling of the mesh model based on [10]. The
result is shown in Figure 3 for the top wing part.

E. Data-glove and calibration

To capture the fingertips positions we use the data-
glove Perception Neuron system e. The data-glove is
equipped with 8 sensors, 2 on the thumb and index, 1 on
the remaining fingers and 1 on the back of the hand. In this
study we are interested with the fingertips data position of
the thumb F1, index F2 and middle finger F3.

As mentioned in section II-A the data-glove captures
the hand motion data in its own frame G. To use the
captured data in our framework we calibrate the internal
reference frame G of the data-glove on the marker placed

dhttp://spectrum.ieee.org/automaton/robotics/robotics-hardware/sweep-
lidar-for-robots-and-drones

ehttps://neuronmocap.com/

Fig. 4: The top wing part model (in black dots) overlays the
real top wing. The red dot represents the grasping points of
the top wing centered on the fingertips frames F1, F2 and
F3 captured by the data-glove.

on it MG thus determining MGTG. The determination of this
transformation is done empirically with the visual feedback
of the fingertips frames F1, F2, F3.

F. Grasping points determination

The grasping points of the object parts are determined
using an algorithm based on point cloud and the fingertips
positions captured by the data-glove after calibration.

First, the model of the object part (explained in section II-
D) is overlayed on the real object part by using the pose of
the AR marker in the camera frame CTM . Then, the point
cloud model of the object part is organised in a kd-tree to
realize a nearest neighbor search based on [11] centered on
each fingertips positions F1, F2 and F3 inside a sphere of
radius rg.

The nearest neighbor search is realized in the the object
part frame M. This allows the point cloud to be organised
in a kd-tree only one time since the point cloud model
does not change in its own frame due to the rigid nature
of the object part. The point cloud is organised in a kd-tree
during the initialization of the framework thus decreasing the
computation time of the nearest neibor search at runtime.

The results of the grasping points determination are shown
in Figure 4.

G. Contact points determination

The contact points detection is realized using the point
cloud model of the object parts and their poses in the camera
frame CTM1, CTM2, respectively for the body and top
wing parts. The contact detection is also based on a nearest
neighbor search.

First, both of the models are overlayed on the real object
parts using CTM1 and CTM2. Then, one of the model part
is organised in a kd-tree in order to realize an optimized
nearest neighbor search centered on the points of the other



Fig. 5: Top wing part model contact with slide assembly
motion. In this case we observe that the edge of the wing
was in contact with the body part and that the assembly task
was realized by sliding the top wing from the side of the
body part.

model part. The search is realized within a sphere of a radius
rc.

Like explained in section II-F the kd-tree is organised only
one time which allows a fast collision detection at runtime.

H. Contact and grasping points visualisation

In this section, the generated visual models based on
the results of the grasping points and contact points are
explained.

To observe and quickly analyse the obtained results
the framework is equipped with a visualisation tool. The
tool generates a colored model of the object parts with
the contact and grasping points based on the assembly
task realised by the user. The results can be observed in
Figures 8, 9 and 10.

1) Grasping points model: To generate the grasping
points model, we define a visualisation value v for each
points of the model. In each frame v is incremented by
1 for each point where a contact is detected. When the
assembly task is over v is equalized from 0 to 255 in order
to visualize the results in a colored channel (in our case
the red channel) of the point cloud model like seen in
Figure 10. With this method, an area colored with a strong
intensity corresponds to a long grasp.

2) Contact points model: The contact points model is
generated on the same principle as the grasping points model.
In this case, v is incremented by 1 to each contact points
detected between the object parts models at every frame.
Like with the grasping points model v is equalized at the
end of the assembly task. The results can be observed in
Figures 5, 6, 8 and 9.

Fig. 6: Top wing part model contact without slide assembly
motion. In this case the edge of the plane is not coloured
meaning that there was no contact at this location. The
assembly task was performed by placing the top wing from
the top of the body part, no sliding motion was realized.

III. EXPERIMENT

In order to demonstrate the functionality of the framework
a user was asked to assemble the top wing and body parts
of a toy airplane placed on a table (as seen in Figure 2). For
the experiment we use the data-glove which is connected to
a computer running Windows 10 64-bit. The data is sent via
a network cable through a ROS topic to another computer
equipped with Ubuntu 14.04 64-bit where the framework is
running. The computer where the framework is installed has
8G memory and a i5-4460 CPU. We use a Orbbec Astra
S camera f to acquire the rgb images with a resolution and
frequency of 640 ∗ 480 @ 30Hz. The camera is equipped
with a depth sensor but the depth information is not used
in this framework. The subject was a male aged of 31 with
prior knowledge in robotics.

Figure 7 shows the top wing of the toy airplane being
assembled to the plane’s body by the user. The grasping and
contact points are determined with the algorithms described
respectively in section II-F and II-G.

The model generated for the grasping points is shown in
Figure 10. The contact points model are shown in Figures 8
and 9.

IV. DISCUSSION

The experiment shows that the framework realizes its
function by providing the grasping and contact points of the
object parts as well as their motion while being assembled.
One of the advantages compared to other data acquisition
system [4] is its simplicity to set-up and its affordability.
Indeed, most of the other data acquisition system are based
on expensive materials to track the user’s hand, fingertips
and the grasping points of the object parts. Our system is
based on printed AR markers which are easy to make and

fhttps://orbbec3d.com/



Fig. 7: Grasping and collision points during assembly
demonstration. Blue areas correspond to the grasping points.
Yellow area corresponds to the collision points. The orange
body and green top wing models are overlayed on their real
respective parts

place on the object parts and data-glove. The user’s fingertips
are tracked with a data-glove which is cheap and mobile
compared to other systems. Our framework also detects the
contact points between the object parts being assembled
without the need to place expensive sensors on the object
parts.

The visualisation tool implemented in the framework
offers useful information from a grasping point of view but
also from an assembly point of view.

The information obtained from the grasping areas and the
fingertips motion will be used to synthesis a stable grasp [12].
But they also offer an insight on the user’s behaviour while
realizing an assembly task compared to realizing a grasping
task by studying the difference in grasping areas location.
The grasping model offers also the possibility to study
whether or not the user’s fingertips slip during an assembly,
grasp task or both.

The contact points model allows to quickly understand
how the assembly was realized. For example in Figure 5
we can see that the assembly was made by sliding the
top wing part on the body part hence the slight red areas
(corresponding to a slight contact) at the top wing’s edge.

Fig. 8: Top wing part contact points results. The intensity of
the model reflects the duration of the contact. In this case
we observe that the edge of the wing was in short contact
with the body part of the plane during the assembly task.

Fig. 9: Plane body part contact points results. The red area
indicates the contact with the top wing part of the plane. We
can notice that the red color is more intense on the edge of
the fixture part.

Whereas in Figure 6 we observe that the assembly was made
with no sliding contact between the body part and the top
wing part.

Several aspect of the framework could be improved.
Indeed, one advantage of using a data-glove over a vision
system to capture the fingertips positions while assembling
the object parts is to avoid the problem of occlusion of the
fingers. But, in order to capture the fingertips and object
parts positions in a common frame, the data-glove must be
calibrated on the camera frame. In this study the calibration
of the data-glove is realized using a AR marker. Model fitting
techniques would improve the calibration of the data-glove
which would lead to an improvement of the grasping points
accuracy.



Fig. 10: Top wing part grasping points results. We can
observe the intense red area corresponding to one of the
user’s finger grasping the top wing part.

Moreover, in the framework the AR markers provide a
reliable tracking results but they also restrain the motion and
the grasping areas of the user. Markerless tracking methods
[13] [14] would allow the user to grasp and assemble the
object parts more naturally.

The contact and grasping model could also be improved
by taking into account distance from the fingertips to the
contact surface as a weight in the incrementation of the v
value.

V. CONCLUSION

This paper shows the functionality of the proposed frame-
work to capture the grasping and contact points as well as the
motion between two object parts being assembled by a user.
The framework offers a quick understanding of the assembly
realized by generating a contact and grasping model of the
object parts. Future research will focus on improving the
framework by implementing a markerless object tracking
algorithm and using the framework to capture and replicate
the assembly motion on a Dual-Arm robot.
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