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Abstract— This paper discusses a dynamic nonprehensile
manipulation of a thin deformable object and its rotational
behavior similarity to bipedal gaits toward an effective rotation.
A rigid plate end-effector at the tip of a high-speed manipulator
can remotely manipulate an object without grasping it. We make
use of a simulation model in order to approximate the dynamic
characteristics of a thin deformable object on a plate. In this
simulation model, we used the parameters estimated from a
slice of cheese, as a sample of a real deformable object. Through
simulation analysis we show how the object changes its rotational
behavior with an analogy to the motion of bipedal gaits sliding,
walking, and running. We investigate how the friction between
the plate and the object influences the object’s angular velocity.
We show that an optimum friction point exists and that it is
determined based on the object’s rotational behavior.

I. INTRODUCTION

Along with the advance of technology in both sensing and
actuation, various types of dynamic skills in robotics have
been developed. In the case where a simple end-effector is
used, a robot-system can compensate for its lack of DOFs
(degrees of freedom) by utilizing dynamic effects produced
by high-speed robot motions and by using an appropriate ma-
nipulation strategy. There have been various works discussing
nonprehensile manipulation [1]–[7], among others, including
our former work [7]. In which we proposed a dynamic
manipulation inspired by the handling of a pizza peel . A
chef handles the peel and remotely manipulates a pizza on the
plate. We found that the chef aggressively utilizes two DOFs
from the remote handling location during the manipulation:
translation X along the bar and rotation Θ around the bar,
as shown in Fig. 1(a). This manipulation scheme has the
advantage that the robot can remotely manipulate an object
in areas with high temperatures, electromagnetic fields, etc,
where electrical hardware is unavailable. We have proposed
a dynamic nonprehensile manipulation for controlling the
position and the orientation of an object on a plate by applying
the peel mechanism to the robot system.

Most of the works done on manipulation utilizing a plate
have supposed that the object is rigid not deformable. Thus,
we have also proposed a dynamic nonprehensile manipulation
for a deformable object, in which we have found that a
deformable object can rotate faster than a rigid one [8], as
shown in Fig. 1(b). We have also found that there exists
and optimum plate motion leading to the maximal angular
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Fig. 1. Nonprehensile manipulation for rotating an object: overview of the
experimental system in (a) and the rotational behavior of a deformable object
in (b).

velocity of the deformable object. In order to extend the
aforementioned investigation, in this paper we investigate the
influence that the friction between the plate and the object
has in the object’s angular velocity and its relation with the
object’s behavior of rotation.

In this paper, after explaining the principle of rotation,
we briefly review the simulation model used to approximate
the dynamic characteristics of a thin deformable object on
the plate. Through simulation analysis, we first show that
the object’s rotational behavior changes with respect to the
plate’s motion frequency, similar to sliding, walking, and
running gaits done by bipeds. Then, we investigate how
the friction between the plate and the object influences the
object’s angular velocity and show that the optimum friction
point is determined based on the object’s rotational behavior.

This paper is organized as follows. In section II, we explain
the essence of the principle of rotation. In section III, we
review the simulation model for a deformable object. In
section IV, we show the simulation analysis based on real
food. In section V, we give the conclusion of this work.

II. PRINCIPLE OF ROTATION

Let us briefly explain the principle of rotation that we will
use later in Section IV. Fig. 2 shows the top view and the
side view of the object on the plate, this plate has two DOFs:
translation X along the bar and rotation Θ around the bar,
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Fig. 2. Mechanism for rotating an object on the plate

as shown in Fig. 1(a). The object as well as the plate are
stationary (X = 0, Θ = 0) in Fig. 2(a). Then, as shown
in Fig. 2(b), by giving a translational acceleration Ẍ to the
plate, an inertial force and a frictional force are generated.
In this case the nominal pressure distribution on the object
is assumed to be uniform and as a result the frictional force
distribution is also uniform, as shown in Fig. 2(b), where
we illustrate just the slice of the frictional force distribution
that passes through the center of mass of the object.Let us
now consider the case in which an angular acceleration Θ̈
is additionally given to the plate, as shown in Fig. 2(c). In
this instance, the pressure distribution on the object results
in a slope due to the inertial force generated by Θ̈, thus the
frictional force distribution also slopes. A rotational moment
n around the object’s center of mass is generated by the slope
in the frictional force, and therefore the object rotates. Let
us consider that a line ξ which passes through the object’s
center of mass and runs parallel to the translational motion Ẍ ,
divides the rotational moment n into the moment contributing
to rotation n+ and the moment braking rotation n−. In the
case of a deformable object, as shown in Fig. 2(d), the inertial
force generated by the plate’s rotational motion produces a
deformation in the object and as a result, the object’s area in
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Fig. 3. Deformable object model.

contact with the plate is reduced. Hence the moment braking
rotation n− decreases. From this reason it is thought that a
deformable object rotates faster than a rigid one.

III. SIMULATION MODEL

In preparation for the motion analysis we briefly review
the viscoelastic model for approximating dynamic behaviors
of a thin deformable object on a plate.
Assumptions: Consider a plate and a thin deformable object
as shown in Fig. 1(a). To simplify the analysis, we set the
following assumptions:

1: The plate is rigid.
2: The plate’s surface area is larger than that of the object.
3: The object is deformable and its thickness is small.
4: The object is isotropic and it has uniform mass distribution

and uniform viscoelasticity.
5: The nominal pressure distribution on the object is uni-

form.
6: The friction coefficient between the plate and the object

based on Coulomb’s law is uniform and is given by µs

and µk for static and dynamic coefficients, respectively.
Deformable object model: For a thin deformable object,
as introduced in [8], we consider virtual tile links as shown
in Fig. 3(a). The link is a square with sides of length l. A
node with a mass of m is located at the center of the link,
where neighboring nodes are connected to each other by a
viscoelastic joint unit as shown in Fig. 3(b). The joint unit is
composed of three DOFs: bending, compression/tension, and
torsion. Where the bending and the compression joints have



viscoelastic elements given by a Kelvin-Voigt model, where
kb and cb express the elasticity and viscosity, respectively,
of the bending joint and kc and cc express the elasticity and
viscosity, respectively, of the compression joint. The torsion
joint is free for simplicity of the simulation model.
Contact Model: Fig. 3(c) shows the contact model between
the plate and the i-th virtual link. The contact force is
computed with the penalty method based on the Kelvin-Voigt
model [9]. The contact force f contact

i applied to the node is
given by

f contact
i = kcontacta

2.2
i + ccontactȧi (ai ≥ 0) (1)

where ai, kcontact, and ccontact are the distance between
the surface of the plate and that of the virtual link, the
elasticity, and the viscosity, respectively. Also, the frictional
force f friction

i applied to the node is given by,

f friction
i = µfcontact

i (µ = µk or µs) (2)

where f friction
i is in the opposite direction to the relative

velocity of the node with respect to the plate’s surface.
Parameters of the Model: As introduced and explained in
[8], the viscoelastic parameters in bending and compression
were estimated using a slice of cheese since it is an artificial
product that can reasonably correspond to assumptions 4, 5,
and 6. Based on the model shown in Fig. 3(a), each squared
link has a length of l = 10 mm, thickness d = 2.5 mm, and
mass m = 0.285 g. For the bending joint the viscoelastic
parameters were obtained as: k̂b = 2.72 × 10−3 N·mm/deg
and ĉb = 4.23×10−6 N·mm/(deg/s). And for the compression
joint the viscoelastic parameters were obtained as: k̂c = 0.79
N/mm and ĉc = 4.9× 10−4 N/(mm/s).

IV. SIMULATION ANALYSIS

We investigate through simulation analysis, how the ob-
ject’s behavior changes with respect to the given plate motion
and show that there exists an optimum friction point that
yields the maximal angular velocity of the object.

A. Settings

A commercially available slice of cheese is used for simula-
tion analysis. The slice of cheese has a circular shape of radius
r = 40 mm, thickness d = 2.5 mm, and mass M = 13.6 g.
The simulation software MD Adams (MSC.Software Corp.)
is utilized to compute the dynamic motion of the object. The
simulation model as shown in Fig. 3(a) is composed of 52
links with l = 10 mm. The four viscoelastic parameters given
in the previous section are utilized together with the friction’s
coefficients µs = 0.75 and µk = 0.4 obtained experimentally.
Additionally, kcontact = 11.86 N/mm, ccontact = 7.65×10−3

N/(mm/s) are given. In order to rotate the object, we give
to the plate’s two DOFs of motion the following sinusoid
trajectories

Θ(t) = −Ap sin(ωpt) (3)
X(t) = Bp sin(ωpt) (4)
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Fig. 4. Analogy to bipedal gaits

where Ap, Bp, and ωp denote the rotational amplitude, the
linear amplitude, and the angular frequency of the plate
motion, respectively.

B. Analogy to Bipedal Gaits

In the simulation of a slice of cheese, with Ap = 12 deg,
Bp = 3 mm, and ωp = 12 × 2π rad/s, it can be noted that
the object’s behavior changes with respect to ωp, as shown
in Fig. 4, where ωp is normalized by ωn = 10π rad/s which
is the first order natural angular frequency of the object in
bending. An interesting observation is that, if the whole object
is separated into two parts by its center, as shown in Fig. 4(a),
and regarding each of these parts as left leg and right leg;
then the object’s behavior can be described with an analogy
to bipedal gaits as follows: sliding (both legs always make
contact with the floor), as shown in Fig. 4(a), walking (at least
one leg makes contact with the floor), as shown in Fig. 4(b),
and running (both legs float at the same time), as shown in
Fig. 4(c). Finally, for a larger ωp, the object becomes unstable
and it cannot rotate anymore, as shown in Fig. 4(d). We define
failures as those cases in which the object’s center slips more
than 10 mm or when the object turns over.



C. Optimum Friction Point

The simulation results in Fig. 5 show the relationship
between the angular acceleration of the plate Apω

2
p, the

friction angle between the plate and the object α = tan−1(µs)
and the angular velocity of the object ωB , for a plate’s
rotational amplitude Ap = 3 deg, translational amplitude
Bp = 3 mm and ωn = 10π rad/s. The �, △, and ⃝ denote
the object’s sliding, walking, and running phases, respectively.
Here, it must be pointed out that not only the static coefficient
of friction µs, but also the dynamic coefficient of friction µk

changes and it does it proportionally to µs, that is µk = βµs,
where β = 0.53 is constant.

The friction’s influence in the object’s angular velocity ωB ,
as shown in Fig. 5, can also be explained with the analogy
to bipedal gaits. When the friction angle α is around 0 deg,
the object cannot rotate fast because the moment contributing
to rotation n+ cannot be generated. This corresponds with a
slippery floor for a biped’s gait. In the other extreme, when
the friction angle α is around 80 deg, the object also cannot
rotate fast because the frictional force becomes too large
so that it almost reaches a balance with the inertial force,
i.e. it is very close to neutralize the inertial force thus the
rotational moment generated is small. This corresponds with a
sticky floor, where a biped can hardly step. Thus the optimum
friction angle leading to the maximal angular velocity ωBmax

exists in an intermediate friction value. For a small Apω
2
p as

in the sliding phase �, the object keeps full contact with
the plate and no deformation occurs. In this case, both the
contributing moment n+ and the braking moment n− are
generated, as shown in Fig. 2(c), and the optimum friction
angle is around 40 deg. In the walking phase △, the braking
moment n− decreases due to the object’s deformation, as
explained in Fig. 2(d). Therefore the optimum friction angle
moves to a larger one, around 60 deg, so as to increase
the contributing moment n+ without overcoming the inertial
force. For a larger Apω

2
p as in the running phase ⃝, the

object’s contact area during rotation is drastically reduced.
Thus the object rotates faster by the inertial effect while
floating on the air for most of the time, without making
contact with the plate. In this case, a large friction brakes
the object’s rotation at the instants of time it makes contact
with the plate. To avoid this braking, the optimum friction
angle moves to a smaller one, around 30 deg. As it was
explained, the optimum friction point denoted by arrows in
Fig. 5, depends on the object’s rotational behaviors of sliding,
walking, and running.

Furthermore, the optimum angular acceleration Apω
2
p is

obtained around 8 deg/s2, regardless of the friction angle α.
This suggests that an appropriate plate’s angular acceleration
is the most essential point for a fast object’s rotation.

V. CONCLUSION

This paper discussed a dynamic nonprehensile manipu-
lation strategy for rotating a thin viscoelastic object on a
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Fig. 5. Relationship between the friction angle between the plate and the
object α, the angular acceleration of the plate Apω2

p , and the angular velocity
of the object ωB

rigid two DOFs plate. The main results of this paper are
summarized as follows:

• We showed through simulation analysis that the transi-
tion of the object’s rotational behavior with respect to
the plate frequency, mimics either a sliding, walking, or
running gait of a biped.

• We showed that the optimum friction between the plate
and the object, which leads to the maximal rotational
velocity of the object, is determined based on the object’s
rotational behavior.

• We showed that the plate’s optimum angular acceleration
is determined regardless of the friction value between the
plate and the object.
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