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Abstract— This paper discusses a nonprehensile dynamic
manipulation of a deformable object, where the object is
remotely manipulated on a plate attached at the tip of a bar. We
have found that the object’s deformation generated by dynamic
effects can drastically contribute to a fast and stable object
rotation. We introduce a new simulation model for a sheet-
like object, where the object is constructed of multiple nodes
connected by three DOFs viscoelastic joint units. We apply
the model to real food after the viscoelastic parameters are
estimated. Then, simulation analysis is used to show how the
object’s rotation behavior changes with respect to the plate’s
motion frequency, similar to the motion of human legs sliding,
walking, and running. Finally we obtain an optimum plate
motion leading to the maximal angular velocity of the object.
We also reveal that an appropriate angular acceleration of
the plate is essential for a dynamically stable and fast object
rotation.

I. INTRODUCTION

Along with the advance of technology in both sensing
and actuation, dynamic skills in robotics have been devel-
oped in [1]–[3]. In the case where a simple end-effector is
used, a robot-system can compensate for its lack of DOFs
(degrees of freedom) by utilizing dynamic effects produced
by high-speed robot motions and by using an appropriate
manipulation strategy. Based on the above discussion, our
former works treated a dynamic manipulation inspired by
the handling of a pizza peel [4], as shown in Fig. 1. A chef
handles the peel and remotely manipulates a pizza on the
plate. We found that the chef aggressively utilizes two DOFs
from the remote handling location during the manipulation:
translation X along the bar and rotation Θ around the bar.
We have proposed a nonprehensile dynamic manipulation for
controlling the position and the orientation of an object on
a plate by applying the peel mechanism to the robot system.
This manipulation scheme has the advantage that the robot
can remotely manipulate an object in areas with high temper-
atures, electromagnetic fields, etc, where electrical hardware
is unavailable. We have also found that a deformable object
can rotate faster than a rigid one [5], as shown in Fig. 1(a)
and (b). In order to extend the aforementioned investigation,
we clarify what actually happens in the manipulation of
a deformable object, and obtain an optimum plate motion
towards an effective manipulation.
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Fig. 1. A nonprehensile manipulation for rotating an object: with a rigid
body in (a) and a deformable body in (b).

In this paper, we introduce a new model for approximating
dynamic characteristics of a sheet-like deformable object
on the plate. This model is composed of multiple nodes
with mass, where neighboring nodes are connected each
other by what we call a viscoelastic joint unit. This unit
is composed of three joints: bending, compression/tension,
and torsion. While the bending and the compression joints
have viscoelastic elements, the torsion joint is free. After
estimating the viscoelastic parameters of real food, we show
the simulation results where the dynamic behavior of the
object nicely corresponds to that in experiments. Through
simulation analysis, we show that the object’s rotation be-
havior changes with respect to the plate’s motion frequency,
similar to sliding, walking, and running motions done by
human legs. We finally reveal that an optimum point leading
to the maximal rotational speed of the object exists and
depends upon the angular acceleration of the plate.

This paper is organized as follows: In section II, we
briefly review the related works. In section III, we show
basic experiments. In section IV, we introduce a simulation
model for a deformable object. In section V, we show how to
estimate the viscoelastic parameters of the object. In section
VI, we show the simulation results based on real food. In
section VII, we give the conclusion of this work.

II. RELATED WORKS

There have been various works discussing nonprehensile
manipulation. Arai et al. have discussed a manipulation
strategy where a cube is rotated around its edge on a plate
attached at the tip of a six DOFs manipulator [1]. Lynch
et al. have discussed controllability, motion planning, and
implementation of a planar dynamic nonprehensile manipu-
lation [2]. Various dynamic tasks were performed by using
a single joint manipulator. Those tasks include snatching an
object from a table, rolling an object on the surface of an
arm, and throwing and catching it. Amagai et al. have shown
the experiments where an object is manipulated on a plate
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Fig. 2. An overview of the experimental system.

attached at the tip of a six DOFs manipulator based on
visual information [3]. Reznik and Canny have developed
the Universal Planar Manipulator (UPM) based on a sin-
gle horizontally-vibrating plate with three DOFs [6]. They
have demonstrated that multiple objects were simultaneously
moved toward target directions. Böhringer et al. [7] have
discussed algorithms for sensorless positioning and orienting
of planar parts using different vibration patterns. Vose et al.
[8] have discussed sensorless control methods for point parts
sliding on a rigid plate with a vibration around an arbitrary
axis. Most of the works done on manipulation utilizing a
plate have supposed that the object is rigid.

III. EXPERIMENT

Fig. 2 shows an overview of the experimental system [4].
A plate is attached at the tip of a manipulator and a vision
system observes the object on the plate. The manipulator
possesses three active joints and a free joint. The plate of
100 mm × 100 mm fixed at the tip of the bar moves along
the longitudinal axis of it (translational DOF: X) by the
rotations of the 1st and the 2nd joints. The plate rotates
around the longitudinal axis of the bar (rotational DOF: Θ)
by the rotation of the 4th joint. A small circular pancake
is utilized as a deformable object. It has a mass of 10 g, a
radius of 42 mm, and a thickness of 1.0 mm. Additionally, as
a rigid body, we prepare another object made of plastic with
the same physical properties except for the bending stiffness.

We give to the plate’s two DOFs of motion the sinusoid
trajectories given by X(t) = 2 sin(14πt) mm and Θ(t) =
−Ap sin(14πt) deg. The object rotates continuously on the
plate by cyclically changing the friction force distribution.
For details about the principle of rotating the object, see
[4]. Fig. 3 shows a series of photos showing the rotational
motion of the rigid object where the amplitude of Θ is given
by Ap = 16 deg. From Fig. 3, it can be seen that the object
does not bend and a full contact between the plate and the
object is kept. The object rotates with an angular velocity
of 15.7 deg/s. Moreover, if we give an amplitude larger than
Ap = 16 deg, the object falls from the plate. On the contrary,
Fig. 4 shows a series of photos showing the rotational motion
of the deformable object where the amplitude of Θ is given
by Ap = 24 deg. From Fig. 4, it can be seen that the object
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Fig. 3. Rotatinal motion of a rigid object: the object is rotating with an
angular velocity of 15.7 deg/s.
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Fig. 4. Rotatinal motion of a deformable object: the object is rotating with
an angular velocity of 251 deg/s.

is bent by the inertial force given by the plate, thus the
contact area between the plate and the object is decreased.
This object’s behavior works effectively for decreasing the
brake torque. As a result, the deformable object can rotate
faster than the rigid object on the plate. The object rotates
with an angular velocity of 251.7 deg/s, which is 16 times
faster than the rigid object. It is remarkable that the behavior
of the deformable object during the rotation is similar to a
human or a biped robot stepping on the floor. We observed
that the DOF of Θ is effective for giving to the deformable
object a role of legs for generating step motions.

IV. MODELING

We introduce a viscoelastic model for expressing dynamic
behaviors of a sheet-like deformable object on a plate.
Assumptions: Consider a plate and a sheet-like deformable
object as shown in Fig. 1. To simplify the analysis, we set
the following assumptions:

1: The plate is rigid.
2: The object is deformable and its thickness is small.
3: The object is isotropic and it has uniform mass distribu-

tion and uniform viscoelasticity.
4: The friction coefficient between the plate and the object
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Fig. 5. Deformable object model.

based on Coulomb’s law is uniform and is given by μs

and μk for static and dynamic coefficients, respectively.
Deformable object model: For a sheet-like deformable
object, we consider virtual tile links as shown in Fig. 5(a).
The link is a square with sides of lengh l. Based on the
shape and the size of the modeled object, the arrangement
of virtual tiles is determined. A node with a mass of m is
located at the center of the link, where neighboring nodes are
connected each other by a viscoelastic joint unit as shown in
Fig. 5(b). The joint unit is composed of three DOFs: bending,
compression/tension, and torsion. While the bending and the
compression joints have viscoelastic elements given by a
Kelvin-Voigt model, the torsion joint is completely free. In
Fig. 5(b), kb and cb express the elasticity and viscosity of the
bending joint, respectively. Also, kc and cc are the elasticity
and viscosity of the compression joint, respectively.
Contact Model: Fig. 5(c) shows the contact model between
the plate and the i-th virtual link. The contact force is
calculated with the penalty method based on the Kelvin-Voigt
model [10]. The contact force f contact

i applied to the node
is given by

f contact
i = kcontacta

2.2
i + ccontactȧi (ai ≥ 0) (1)

where ai, kcontact, and ccontact are the distance between the
surface of the plate and the surface of the virtual link, the
elasticity, and the viscosity, respectively. Also, the friction
force f friction

i applied to the node is given by,

f friction
i = μf contact

i (μ = μk or μs) (2)

where f friction
i is in opposite direction to the relative velocity

of the node with respect to the plate’s surface.
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Fig. 6. Parameter estimation model.

V. PARAMETER ESTIMATION

We show how to estimate the viscoelastic parameters of a
real deformable object by experiments.

A. How to Estimate Parameters

Viscoelasticity in Bending: Fig. 6(a) shows the model
utilized to estimate the viscoelasticity in bending. This model
is composed of two links connected by a single joint, where
one tip is fixed and the other is free; thus, it is deformed
by gravity. This deformation is approximated by two angles:
φ1 and φ2, which denote the angle of the fixed point and
the one of the joint located at the center, respectively. The
equation of motion of this model is expressed as follows,

[
φ̇2 φ2

] [
cb

kb

]
=

1
2
mgl cos (φ1 + φ2) − 1

4
ml2φ̈2 (3)

Using the sampling data in t1 ≤ t ≤ tn, (3) is expressed by

Apb = q (4)

where

A �

⎡
⎢⎢⎢⎣

φ̇2(t1) φ2(t1)
φ̇2(t2) φ2(t2)

...
...

φ̇2(tn) φ2(tn)

⎤
⎥⎥⎥⎦ , pb �

[
cb kb

]T
,

q �

⎡
⎢⎢⎢⎣

1
2mgl cos (φ1(t1) + φ2(t1)) − 1

4ml2φ̈2(t1)
1
2mgl cos (φ1(t2) + φ2(t2)) − 1

4ml2φ̈2(t2)
...

1
2mgl cos (φ1(tn) + φ2(tn)) − 1

4ml2φ̈2(tn)

⎤
⎥⎥⎥⎦

From the least squares solution of (4), the viscoelastic
parameters p̂b � [ĉb k̂b]T can be estimated by

p̂b = (ATA)−1ATq (5)

Viscoelasticity in Compression: Fig. 6(b) shows the model
utilized to estimate the viscoelasticity in compression, where
one link with a small thickness d is put on the table. The
deformation of the link is given by a displacement s, and
the viscoelastic parameters in the Kelvin-Voigt model are ks,
cs. The contact force fs applied to the surface l × l and the
displacement s are utilized in the equation of motion which
is expressed as follows,

[
ṡ s

] [
cs

ks

]
= fs (6)

Using the sampling data in t1 ≤ t ≤ tn, (6) is expressed by

Bps = fs (7)
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Fig. 7. Angle φ2 with respect to time during the estimation of the
viscoelasticity in bending.

where

B �

⎡
⎢⎢⎢⎣

ṡ(t1) s(t1)
ṡ(t2) s(t2)

...
...

ṡ(tn) s(tn)

⎤
⎥⎥⎥⎦ , ps �

[
cs ks

]T
,

fs �
[
fs(t1) · · · fs(tn)

]T

From the least squares solution of (7), the viscoelastic
parameters p̂s � [ĉs k̂s]T can be estimated by

p̂s = (BTB)−1BTfs (8)

By converting p̂s, p̂c � [ĉc k̂c]T can be obtained by

p̂c = p̂s (d/l)2 (9)

which expresses the viscoelasticity for a contact force applied
to the surface l × d with thickness l.

B. Parameter Estimation in a Real Object

As a real deformable object, a slice of cheese is utilized
in the experiment, where each link is given by l = 10
mm, d = 2.5 mm, and m = 0.285 g. Fig. 7 shows
the angle φ2 with respect to time during the deformation
by gravity. From these data and (5), k̂b = 2.72 × 10−3

Nmm/deg, ĉb = 4.23 × 10−6 Nmm/(deg/s) are obtained. In
Fig. 7, the reconstructed result of φ2 using the estimated
parameters is overlapped. From this figure, it can be seen that
the experimental results and the reconstructed one matched
nicely. Fig. 8 shows the displacement s and the contact
force fs with respect to time during the deformation by
compression. From these data and (8), k̂s = 12 N/mm and
ĉs = 7.9 × 10−3 N/(mm/s) are obtained. Also, k̂c = 0.79
N/mm and ĉc = 4.9 × 10−4 N/(mm/s) are obtained by the
conversion based on (9) . In Fig. 8, the reconstructed result
of fs using the estimated parameters and the displacement
in Experiment 1 is overlapped. From this figure, it can be
seen that the experimental results and the reconstructed one
matched nicely.

VI. SIMULATION BASED ON REAL FOOD

A. Simulation Setting

The object is a circular slice of cheese which has radius
r = 40 mm, thickness d = 2.5 mm, and mass M = 13.6 g.
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Fig. 8. Displacement s and contact force fp with respect to time during
the estimation of the viscoelasticity in compression.

The simulation software MD Adams (MSC.Software Corp.)
is utilized for computing the dynamic motion of the object.
The simulation model as shown in Fig. 9 is composed of
52 links with l = 10 mm. The four viscoelastic parame-
ters obtained in the previous section are utilized together
with μs = 0.75, and μk = 0.4 obtained experimentally;
kcontact = 11.86 N/mm, ccontact = 7.65 × 10−3 N/(mm/s)
are given. In order to rotate the object, we give to the plate’s
two DOFs of motion the following sinusoid trajectories

Θ(t) = −Ap sin(ωpt) (10)
X(t) = Bp sin(ωpt) (11)

where Ap, Bp, and ωp denote the rotational amplitude, the
linear amplitude, and the angular frequency of the plate
motion, respectively. Fig. 9 and Fig. 10 show the simulation
result and the experimental result, respectively, with Ap = 12
deg, Bp = 3 mm, and ωp = 12×2π rad/s. From these figures,
it can be seen that the dynamic behavior in simulation and
that in the experiment qualitatively correspond to each other.
Fig. 11 shows the relationship between the angular frequency
of the plate ωp and the angular velocity of the object ωB

deg/s in simulation and experiment, where ωp is normalized
by ωn = 10π rad/s which is the first order natural angular
frequency of the object in bending. It can be seen that the
maximal angular velocity of the object is produced with
ωp/ωn = 2.8 in both simulation and experiment. Here,
it can be noted that the object’s behavior changes with
respect to ωp. An interesting observation is that, if the whole
object is separeted into two parts by its center, as shown in
Fig. 9(a), and regarding each of these parts as left leg and
right leg; then the object’s behavior can be described with an
analogy to human footsteps. These footsteps motions can be
compared to the object’s behaviors as follows: sliding (both
legs always make contact with the floor), walking (at least
one leg makes contact with the floor), and running (both legs
float at the same time).1 The change in these behaviors as
ωp increases can be observed in Fig. 11, and the maximal
angular velocity is achieved in the running phase, which is
also dynamically stable. Finally, for a larger ωp, the object
becomes unstable and it cannot rotate anymore. We define as

1The video attachment file of this paper shows experiments and the
simulations illustrating the object’s behaviors of rotation on the plate.
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Fig. 9. Series of photos of the simulation using ωp/ωn = 2.4. The object
is rotating on the plate with an angular velocity of ωB = 350 deg/s.

failures, those cases in which the object’s center slips more
than 10 mm or when the object turns over.

B. Optimum Plate Motion

The simulation results in Fig. 12 show the relationship
between the rotational amplitude of the plate Ap, the angular
frequency of the plate ωp normalized by ωn, and the angular
velocity of the object ωB . The dashed lines indicate the
maximal ωB for each Ap, projected onto the ωp/ωn-ωB

plane. If the robot can generate a high frequency of the
plate e.g. ωp/ωn =5, the object will be able to rotate faster
and stable with a small amplitude of the plate. It can be
intuitively understood that a smaller amplitude contributes to
the stability of the rotating object. From Fig. 12, the optimum
combination of Ap and ωp can be obtained, which leads to
the maximal angular velocity of the object, under the given
specification of the robot system. Fig. 13(a), (b), (c), and (d)
show the relationship between the rotational amplitude of the
plate Ap, the angular acceleration of the plate Apω

2
p, and the

angular velocity of the object ωB , where the natural angular
frequency of the object is: (a) ωn = 3.5π rad/s, (b) ωn = 10π
rad/s, (c) ωn = 33π rad/s, and (d) ωn = 320π rad/s. The
value of ωn is changed by modifying the elasticity of the
object for the same mass. In Fig. 13, �, �, and © denote the
object’s sliding, walking, and running phases, respectively.
As shown in Fig. 13(d), the object with the higher stiffness
becomes unstable even with a low acceleration of the plate.
Thus, the maximal angular velocity of the object ωB is
smaller than that of the softer objects in Fig. 13(a), (b), and

� �
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Fig. 10. Series of photos of the experiment using ωp/ωn = 2.4. The object
is rotating on the plate with an angular velocity of ωB = 370 deg/s.
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Fig. 11. Angular velocity of the object ωB with respect to the angular
frequency of the plate ωp/ωn.

(c). This corresponds to the experimental results as shown
in Fig. 3 and Fig. 4. From Fig. 13(a), (b), (c), and (d), it can
be confirmed that the optimum angular acceleration Apω

2
p

is uniquely determined for each of the deformable objects,
as indicated by the shaded area, while the maximal angular
velocity of the object ωB changes depending on how large
the amplitude Ap is chosen. As shown in Fig. 13(b), (c), and
(d), the maximal velocity of the object ωB is produced in the
running phase. This means that, to rotate the object faster, the
plate needs an enough acceleration to push up the object so
that it can run and turn. However, as shown in Fig. 13(a), the
maximal velocity of the object is produced when walking.
The reason is that the object is too soft, hence the object is
greatly deformed, and as a result, it is folded in two before it
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Fig. 12. Relationship between Ap, ωp/ωn, and ωB .

starts to run. Thus, although the object’s behavior differs, an
appropriate angular acceleration of the plate is essential to
generate a fast and stable rotation of the deformable object.

VII. CONCLUSION

This paper discussed a nonprehensile dynamic manipula-
tion of a deformable object. The main results in this paper
are summarized as follows:

1. We introduced a model for approximating the dynamic
behavior of a deformable object, where the object is
composed of multiple nodes and three DOFs joint units
with viscoelasticity.

2. We showed how to estimate an object’s viscoelastic pa-
rameters by experiment, and showed the simulation and
experimental results to validate the introduced model.
Dynamic behaviors in both simulation and experiment
correspond to each other qualitatively.

3. We discovered through simulation analysis that the
object’s rotation behavior changes with respect to the
plate frequency, similar to sliding, walking, and running
motions done by human legs.

4. We obtained the optimum plate motion leading to the
object’s maximal rotational speed and revealed that
the angular acceleration of the plate is essential for a
dynamically stable and fast object rotation.

In the future, we would like to investigate friction’s influence
in the determination of the optimum plate motion as well as
extend the analysis to thick objects so that we can apply it
to several kinds of real deformable objects.
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