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Abstract— This paper discusses a dynamic nonprehensile
manipulation of a thin flexible object where the object rotates
on a plate. We have found that a thin flexible object shows
bipedal-gaited motions when rotating on the vibrating plate
and that the maximal angular velocity of the object is achieved
by an appropriate plate motion with respect to the object’s
physical parameters. Based on such an object’s behavior, in this
paper, we propose how to identify the physical parameters of a
bipedal-gaited object, as an inverse problem. The relationship
between the plate’s angular frequency and the object’s angular
velocity shows a resonant curve based response. Focusing on this
nature, we employ a Lorentzian curve fitting to represent the
dynamic characteristics of the object with a simple mathemat-
ical expression. Through simulation analysis, we show that two
physical parameters, the first order natural angular frequency
in bending and the friction between the object and the plate,
dominate the Lorentzian curve characteristics: the former one
determines the particular frequency leading to the object’s
maximal angular velocity, while the later one determines the
width of the convex curve. Based on the above correlations,
we propose an identification method in which the two physical
parameters of an object can be estimated.

I. I NTRODUCTION

In recent years, dynamic manipulation has been a prevail-
ing topic among researchers [1], [2]. Particularly, when the
object is manipulated by a plate instead of multi-fingered
hands, the manipulation scheme is called nonprehensile or
non-grasp manipulation [3]–[12]. We have already developed
a dynamic nonprehensile manipulation scheme inspired by
the handling of the pizza peel and made clear how to
control the position and orientation of a rigid object on a
plate [13]. This manipulation scheme has the advantage that
it can remotely manipulate objects by using a simple flat
plate, therefore allowing the robot to operate the object in
areas with high temperatures, high humidity, electromagnetic
fields, etc, where electrical hardware is unavailable or where
humans can be in danger. Applying this manipulation scheme
to handle a deformable object, it also has the advantage of re-
ducing the concentration of stress on the object, thus avoiding
the object’s destruction. Based on this consideration, we have
tried to control the posture and the shape of a deformable
object on a plate [14], [15]. Through a basic experiment
and simulation analysis, we have found that a flexible object
changes its rotational velocity with an analogy to bipedal
gaits [16]. Such object’s behavior depends on the physical
parameters of the object. Based on these observations, this
paper discusses how to identify the physical parameters of
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Fig. 1. The object’s high natural angular frequency in bending in (a) with
the friction between the plate and the object in (b), is converted into a low
angular velocityωB on the plate, as shown in (c).

an object, by characterizing the transition of the object’s
rotation, as an inverse problem.

In this paper, we first show that a thin flexible object can
rotate on a plate as shown in Fig. 1(c), this plate has two
degrees of freedom: one is the translational motionX along a
horizontal axis of the plate, and the other one is the rotational
motion Θ around the horizontal axis. In addition, we show
that the flexible object shows bipedal-gaited motions when
rotating on the plate and that it achieves its maximal angular
velocity by an appropriate combination of the plate’s angular
amplitude and frequency, with respect to its own physical
parameters. Then, we show that the curve describing the
relationship between the plate’s angular frequency and the
object’s angular velocity has a resonance-like curve. Taking
advantage of this similarity, we employ a Lorentzian curve
fitting to represent the dynamic characteristics of the object
with a simple mathematical expression, instead of the equa-
tion of motion that is rather complex and difficult to obtain
because of the intricate dynamics of the system. Through
simulation analysis, we reveal that two physical parameters:
the first order natural angular frequency in bending of the ob-
ject ωn as shown in Fig. 1(a) and the friction angle between
the object and the plateα as shown in Fig. 1(b), strongly
dominate the Lorentzian curve characteristics. The first one
determines the particular frequency leading to the object’s
maximal angular velocity, while the second one determines
the width of the convex curve. Furthermore, based on such
significant correlations, we propose an identification method
in which the two above mentioned physical parameters of an
object can be estimated.

In this manipulation scheme, the object’s bending vibra-
tion of 10 Hz order, when using comestible products such as



cheese or ham, is converted to a rotating motion of at most
1–2 Hz, as a result of the contact friction effect together with
the object’s bipedal gait like behavior, as shown in Fig. 1. In
general, to directly observe the object’s bending vibration, a
high-speed camera with hundreds or thousands fps order is
required to guarantee a high accuracy in the measurements.
In contrast, the proposed method has the advantage that a
normal camera with30 fps can be utilized, since we only
have to deal with the low frequency rotation of the object.

This paper is organized as follows: in section II, we briefly
introduce the manipulation scheme used in this work, and we
show the curve fitting employed to characterize the transition
of the object’s angular velocity. In section III, we propose
an identification method to estimate two physical parameters
of the object, as an inverse problem. In section IV, we give
the conclusion of this work.

II. OBJECT’ S ANGULAR VELOCITY CHARACTERIZATION

In this section we give a brief explanation of the manip-
ulation scheme, and then, based on simulation analysis we
show how the curve representing the relationship between
the object’s angular velocityωB and the plate’s frequency
fp can be described by a peak function such as the Lorentz
one, and its similarity with the resonance phenomenon.

A. Manipulation Outline

Fig. 2 shows the manipulation of a flexible object on a
plate, in experiment and simulation. The object is a circular
slice of cheese with a diameter of80 mm, as shown in
Fig. 2(a). The plate has two degrees of freedom (DOF):
the translational motion (DOF:X) and the rotational motion
(DOF:Θ), along and around the horizontal axis, respectively.
We give to the plate’s two DOFs of motion sinusoidal
trajectories

Θ(t) = −Ap sin(2πfpt) (1)

X(t) = Bp sin(2πfpt) (2)

where Ap, Bp, and fp denote the angular amplitude, the
linear amplitude, and the frequency of the plate motion,
respectively. Under this plate motion, the object rotates with
an angular velocityωB to the counter-clockwise direction
when ApBp < 0, and to the clockwise direction when
ApBp > 0 [13].

For simulation analysis, we utilize the model, as shown
in Fig. 2(b), introduced in [16] to represent the dynamic
behavior of a flexible object. This model is composed of
virtual tile links, where each virtual tile has a node with
massm located at its center. Adjacent nodes are connected to
each other by what we call a viscoelastic joint unit, which is
composed by three DOFs: bending, compression/tension and
torsion. The bending and the compression joints have vis-
coelastic elements and the torsion joint is free. In Fig. 2(b),
the object is composed of52 tile links of length10 mm and
88 viscoelastic joint units, to approximate the real object
shown in Fig. 2(a).

Fig. 3 shows the behavior of a flexible object ofωn = 10π
rad/s forAp = 3 deg, Bp = 3 mm, fp = 24 Hz and a
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Fig. 2. Dynamic nonprehensile manipulation for rotating a flexible object
using a plate with two degrees of freedom: (a) in experiment and(b) in
simulation.
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Fig. 3. Snapshots of the simulation forfp = 24 Hz, Ap = 3 deg,
ωn = 10π rad/s andα = 36.9 deg. The object is rotating on the plate with
an angular velocity ofωB = 582 deg/s, by using a bipedal-gaited motion.

friction angleα = 36.9 deg. Hereωn represents the first
order natural angular frequency in bending, as shown in
Fig. 1(a), that is the frequency with which the object bends up
and down freely, without any external forces nor restraints.
This parameter depends on the mass of the nodes and the
elasticity of the joint units of the model used for simulation.
The friction angle between the plate and the object is defined
asα = tan−1(µs), as shown in Fig. 1(b), whereµs is the
static coefficient of friction, and the dynamic coefficient of
friction is determined asµk = βµs, where β = 0.53 is
constant. Therefore, whenα changes it means thatµs and
µk also change. In Fig. 3, the object is rotating with an
angular velocity ofωB = 582 deg/s. If the object is divided
in two parts by the line that passes through its center, and
regarding each half as left leg and right leg, the rotational
motion of the object suggests a bipedal gait like behavior on
the floor [16].

B. Object’s Angular Velocity Transition

Let us now focus on the transition of the object’s angular
velocity ωB , through simulation analysis. Fig. 4 shows an
example of the relationship between the object’s angular
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Fig. 4. Relationship between the object’s angular velocityωB , the plate’s
motion frequencyfp and the plate’s angular amplitudeAp, for Bp = 3

mm, ωn = 10π rad/s andα = 36.9 deg.
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Fig. 5. Relationship between the object’s angular velocityωB , the object’s
first order natural frequency in bendingωn and the plate’s frequencyfp,
for Ap = 3 deg,Bp = 3 mm andα = 36.9 deg.

velocity ωB , the plate’s motion frequencyfp and the plate’s
angular amplitudeAp for a flexible object of circular shape,
with ωn = 10π rad/s, a friction angle between the plate and
the object ofα = 36.9 deg, and a translational amplitude
Bp = 3 mm. From Fig. 4 we can obtain the optimum
combination offp andAp that generates the maximal angular
velocity of the object. In this case, it can be seen that for
Ap = 3 deg the object has its maximal angular velocity
ωBmax aroundfp = 24 Hz, and that for frequencies larger
than this the object’s angular velocity decreases as the object
becomes unstable, that is, its center slips more than10 mm.
Moreover, Fig. 5 shows the relationship betweenfp andωB

for various ωn. From this figure, it can be seen that the
frequency at whichωBmax occurs, is uniquely determined
for each of these flexible objects.

Also, we would like to point out that in Fig. 3 the object
is making contact with the plate frequently, as the object
rotates on the plate with bipedal-gaited like motions. This
means that the energy dissipation of the object is mostly due
to the friction between the plate and the object. In this case
the damping effect of the viscoelastic joint units is considered
to be negligible. Based on this observation, we can suppose
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Fig. 6. Lorentz distribution for three different values ofλ andx0 = 0.

that the object’s angular velocity transition strongly depends
not only onωn but also onα.

In order to simplify the analysis, in the following sections
we suppose that all the flexible objects have the same
negligible thickness, the same circular shape, and the same
diameter of80 mm. Also we only useAp = 3 deg and
Bp = 3 mm for the plate’s motion.

C. Resonance-like Curve Fitting

The object’s behavior suggests a peak line shape which
is characteristic of a resonant behavior, i.e. the object’sωB

reaches its maximal amplitudeωBmax only at the frequency
of resonance. Taking advantage of this similarity, we employ
a nonlinear regression analysis to represent the transition of
the angular velocity of the object by a simple mathematical
expression.

One of the most common functions describing a resonant
behavior in curve fitting is the Lorentz distribution (also
known as Cauchy distribution) function

g(x) =
1

πλ
(

1 +
(

x−x0

λ

)2
) (3)

where x0 is the median of the distribution,λ is the half
width at half maximal (HWHM) of the probability density
function g(x). These two parameters determine the shape of
g(x), and its maximal amplitude atx = x0 is given by

a =
1

πλ
, (4)

which depends on the value ofλ. Fig. 6 shows the plot of
(3) for three different values ofλ andx0 = 0. In this figure
it can be seen that as the value ofλ increases the value of
the maximal amplitude ofg(x) decreases, as stated in (4).
In order to have the maximal amplitude independent of the
width of the curve, we now introduce a third parameterγ so
that the maximal amplitude is given by

ã =
γ

πλ
. (5)

Consequently, (3) is replaced by

g̃(x) =
ã

1 +
(

x−x0

λ

)2
. (6)
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Fig. 7. Example of a Lorentz Function.
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Fig. 8. Relationship between the object’s angular velocityωB and the
plate’s frequencyfp, for ωn = 10π rad/s,α = 36.9 deg,Ap = 3 deg and
Bp = 3 mm.

In (5), the parameterγ can change the maximal amplitude,
therefore we can have curves with the same maximal ampli-
tude but different widths, that cannot be obtained by using
(4). This third parameterγ allows the nonlinear regression
to get a better approximation of the data to be fitted. Using
(6) to express the transition of the object’s angular velocity
ωB as a function of the plate’s frequencyfp, we have

ωB(fp) =
ωBrmax

1 +
(

fp−f0
b

)2
. (7)

where ωBrmax is the maximal amplitude ofωB at fp =
f0, b is the HWHM and f0 is the frequency at which
ωB = ωBrmax. These three parameters determine the line
shape of this expression, as illustrated with an example in
Fig. 7. If we compare Fig. 4 with Fig. 7, it can be seen
that both line shapes look similar to each other. The data
analysis software Sigmaplot (Systat Software, Inc.) is utilized
for the nonlinear regression analysis. This software uses
the Marquardt-Levenberg algorithm to find the parameters
ωBrmax, f0, and b, that together with (7), yields the best
approximation to the given data.

We carry out the non linear regression analysis of Fig. 4 for
Ap = 3 deg by using (7), the resulting line shape is shown in
Fig. 8, where the dot line represents the simulation data and
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Fig. 9. Relationship between the object’s first order natural angular
frequency in bendingωn and the parameterωBrmax obtained from the
nonlinear regression offp vs. ωB , for different friction anglesα with
Ap = 3 deg andBp = 3 mm.

the solid line represents the regression line. The parameters
obtained from this regression areωBrmax = 598.7 deg/s,
b = 5.1 Hz, and f0 = 25.1 Hz. Here the parameter
f0 can be regarded as a kind of frequency of resonance
at which ωBrmax occurs. These parameters are close to
ωBmax = 582 deg/s atfp = 24 Hz obtained in Fig. 3.
The most common measure of how well a regression model
describes the data is the coefficient of determinationR2. In
this caseR2 = 0.9887, the closerR2 is to one, the better the
plate’s frequency (independent variable) predicts the object’s
angular velocity (dependent variable).

III. I NVERSEPROBLEM: OBJECT’ S PHYSICAL

PARAMETERS IDENTIFICATION

In this section, based on the curve fitting of the object’s
angular velocityωB line shape described in section II-C,
we propose an identification method of the object’s physical
parametersωn andα that are supposed to strongly dominate
the object’s angular velocity line shape as mentioned in
section II-B.

A. Object’s natural angular frequency estimation

Fig 9 shows the values ofωBrmax resulting from the
nonlinear regression analysis, for three different flexible
objects, that isωn is different, and for six different friction
anglesα. From this figure it can be seen that the value of
ωBrmax increases asωn increases. However, for eachωn

the value ofωBrmax also changes depending on the friction
angleα. From this relationship it is difficult to decompose
the effects ofωn and α on ωBrmax. This means thatωn

and/orα cannot be estimated by observingωBrmax.
We next focus on the parameterf0. Fig 10 shows the

results for the parameterf0 with respect toωn for the same
six different friction angles as in Fig. 9. It can be seen that
the value off0 increases asωn increases. Here, the straight
lines represent the regression line betweenf0 and ωn for
eachα. It can be seen that all the lines are overlapped with
similar slopes. This result suggests that the object’sωn can be
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Fig. 10. Relationship between the object’s first order natural angular
frequency in bendingωn and the parameterf0 obtained from the nonlinear
regression offp vs.ωB , with its corresponding regression line for different
friction anglesα with Ap = 3 deg andBp = 3 mm.
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Fig. 11. Relationship between the friction angleα and the half width at
half maximalb obtained from the nonlinear regression offp vs. ωB , for
three differentωn with Ap = 3 deg andBp = 3 mm.

estimated by a linear equation as a function off0, regardless
of the friction angleα, as follows,

ω̂n = p1f0 − q1 . (8)

Therefore, if we obtainf0 from the curve fitting of the
relationship between the object’s angular velocityωB and
the plate’s frequencyfp, then we can estimate the value of
the object’s angular frequency in bendingωn.

B. Friction angle estimation

Fig. 11 shows the results for the parameterb with respect
to α for three different object’s angular frequency in bending
ωn. From this figure it can be seen that the values ofb for
ωn = 3.5π rad/s andωn = 10π rad/s are similar, while
the ones forωn = 33π rad/s are notably larger than the
others. In this case there is no unique value ofα for each
value of b. Let us now use the value ofb normalized by
f0 and focus on the relationship betweenα and b/f0 that
contains the information of the sharpness of the curve. We
show in Fig. 12 the linear regression of the relationship
betweenα andb/f0 for three different flexible objects. From
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Fig. 13. Curves resulting from the non linear regression betweenfp andωB

for three differentωn with α = 36.9 deg,Ap = 3 deg andBp = 3 mm.
Herefp andωB are normalized byf0 andωBrmax, respectively.

this figure, it can be observed that as the friction angleα
increases,b/f0 also increases, with similar slopes for each
of the three flexible objects, and that the values ofb/f0 of
the three different objects for the same friction angleα are
similar. This can be better appreciated in Fig. 13, where the
relationship betweenfp andωB is shown for three different
ωn and the friction angleα = 36.9 deg. Here, both the
plate’s frequencyfp and the object’s angular velocityωB are
normalized by its parametersf0 andωBrmax, respectively,
for eachωn. Therefore, all the curves have unit height and its
peak center is at1. From Fig. 13, it is clear that all the curves
have similar shape, which means the proportion ofb/f0 is
the same for all the three flexible objects with the same
friction angleα = 36.9 deg. In contrast, Fig. 14 shows the
relationship betweenfp and ωB for three different friction
angles and the flexible object ofωn = 10π rad/s. Here, as
in Fig. 13, both the plate’s frequencyfp and the object’s
angular velocityωB are normalized by its parametersf0 and
ωBrmax, respectively, for eachα. From Fig. 14, it is clear
that α increases as the proportionb/f0 does. This implies
that the curve shape contains the friction information of the
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Fig. 14. Curves resulting from the non linear regression betweenfp and
ωB for different friction anglesα with ωn = 10π rad/s,Ap = 3 deg,
andBp = 3 mm. Herefp andωB are normalized byf0 andωBrmax,
respectively.

system.
In general the parameterb divided by f0 represents the

damping coefficient of the system as stated in [17]. This
confirms our result thatb/f0 depends on the friction angle
α, as in this case we consider that the energy dissipation is
mainly due to the friction supposing that the damping effect
of the viscoelastic joint units of the object is negligible in
the object’s bipedal gait like motions.

From the linear regressions in Fig. 12, the friction angleα
can be estimated by a linear equation as a function ofb/f0
as follows,

α̂ = p2(b/f0)− q2 . (9)

Therefore, if we obtainb andf0 from the curve fitting of the
relationship between the object’s angular velocityωB and the
plate’s frequencyfp, then we can estimate the value of the
friction angleα between the plate and the object.

IV. CONCLUSION

This paper discussed the characterization of the dynamic
nonprehensile manipulation of a thin flexible object. The
main results in this paper are summarized as follows:

1. We discovered that the line shape of the angular velocity
of the object with respect to the plate’s frequency has
a resonance-like behavior.

2. We showed that the object’s angular velocity transi-
tion can be represented with a simple mathematical
expression like the Lorentz distribution one, instead of
a complex expression derived from the dynamics of the
system.

3. We found out that the frequency of resonance at which
the object’s maximal angular velocity occurs, depends
on the first natural angular frequency in bending of the
object.

4. We found out that the width of the convex curve
describing the object’s angular velocity depends on the
friction between the object and the plate.

5. We proposed how to identify the object’s first natural
angular frequency in bending and the friction between
the object and the plate, based on the Lorentzian curve
fitting.

In the future, we would like to examine various kinds of
real flexible objects and characterize their dynamic behaviors
in order to validate the applicability of the proposed method.
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[9] K. F. Böhringer, K. Goldberg, M. Cohn, R. Howe, and A. Pisano,
“Parallel microassembly with electrostatic force fields,” inProc. IEEE
Int. Conf. Robot. Autom., vol. 2, 1998, pp. 1204–1211.

[10] T. Vose, P. Umbanhowar, and K. M. Lynch, “Friction-induced velocity
fields for point parts sliding on a rigid oscillated plate,” Int. J. Robot.
Res., vol. 28, no. 8, pp. 1020–1039, Aug. 2009.

[11] T. Vose, P. Umbanhowar, and K. M. Lynch, “Friction-induced lines of
attraction and repulsion for parts sliding on a oscillated plate,” IEEE
Trans. Autom. Sci. Eng., vol. 6, pp. 685–699, Oct. 2009.

[12] T. Vose, P. Umbanhowar, and K. M. Lynch, “Toward the set of
frictional velocity fields generable by 6-degree-of-freedom oscillatory
motion of a rigid plate,” in Proc. IEEE Int. Conf. Robot. Autom., 2010,
pp. 540–547.

[13] M. Higashimori, K. Utsumi, Y. Omoto, and M. Kaneko, “Dynamic
manipulation inspired by the handling of a pizza peel,” IEEE Trans.
Robot., vol. 25, pp. 829–838, Aug. 2009.

[14] M. Higashimori, Y. Omoto, and M. Kaneko, “Non-grasp manipulation
of deformable object by using pizza handling mechanism,” in Proc.
IEEE Int. Conf. Robot. Autom., Kobe, Japan, 2009, pp. 120–125.

[15] T. Inahara, M. Higashimori, K. Tadakuma, and M. Kaneko, “Dynamic
nonprehensile shaping of a thin rheological object,” in Proc. IEEE/RSJ
Int. Conf. on Intell. Robots Syst., San Francisco, CA, USA, 2011,
pp.1392–1397.

[16] I. G. Ramirez-Alpizar, M. Higashimori, M. Kaneko, C.-H. D. Tsai,
and I. Kao, “Dynamic nonprehensile manipulation for rotatinga thin
deformable object: an analogy to bipedal gaits,” IEEE Trans.Robot.,
vol. 28, no. 3, 2012 (in press).

[17] V. J. Logeeswaran, F. E. H. Tay, M. L. Chan, F. S. Chau, andY. C.
Liang, “First harmonic (2f ) characterisation of resonant frequency and
Q-factor of micromechanical transducers,” Analog Integrated Circuits
and Signal Processing, vol. 37, no. 1, pp. 17–33, 2003.


